THREAT ANALYSIS REPORT

DDoS's Newest Minions: IoT Devices

July 2016
This report was written by F5 Labs in conjunction with Loryka.

Table of Contents

Table of Contents .. 2
Table of Figures ... 3
DDoS is Commonplace .. 4
What’s New? .. 5
 IoT devices are the latest minions in cyber weaponry toolkits .. 5
The Interest is High ... 7
 Hunting for IoT devices with default passwords ... 7
 SSH brute force attack numbers and trends ... 8
 Telnet brute force attack numbers and trends ... 10
 July Remaiten spike .. 12
 Telnet brute force attack origin countries ... 13
 Top 10 countries scanning ... 13
 Telnet and SSH attacks by ASN .. 16
 Why are Telnet attacks getting so popular? ... 17
 Top 1000 ASNs launching SSH attacks .. 18
 Top 1000 ASNs launching Telnet attacks .. 19
IoT Botnets DDoSing ... 21
 IoT Botnets attacked multiple US state agencies ... 22
 How much can one device do? ... 24
 Android botnet DDoS attack .. 25
IoT DDoS Attacks Increasing .. 28
 Where are the C & Cs? China, China, China ... 28
TCP Attack Abuse Warnings! ... 28
Conclusion .. 29
ABOUT F5 LABS .. 30
ABOUT LORYKA .. 30
Table of Figures

Figure 1: Default Password Scanning Major Trends .. 8
Figure 2: Six months of SSH brute force attacks .. 9
Figure 3: SSH brute force attacks average day of week .. 9
Figure 4: SSH Brute force attacks by month (daily average) ... 10
Figure 5: Telnet attacks increasing slow and then suddenly ... 11
Figure 6: Telnet Attacks Day of Week Average ... 11
Figure 7: Telnet attacks daily average by month ... 12
Figure 8: Telnet brute force attacks by country - last 30 days ... 13
Figure 9: Telnet brute force attacks by country - Last six months ... 14
Figure 10: Top 20 Countries hunting for IoT devices with Telnet brute force scans - last 30 days 15
Figure 11: Total ASNs launching telnet & SSH brute force attacks .. 16
Figure 12: Total ASNs participating in SSH attacks .. 17
Figure 13: Total ASNs participating in Telnet attacks .. 17
Figure 14: Top 1000 ASNs and their contribution to the total SSH attack volume 18
Figure 15: Top 24 ASNs contributing more than 1% of the total SSH attack volume 19
Figure 16: Top 1000 ASNs and their contribution to the total Telnet attack volume 20
Figure 17: Top 32 ASNs contributing more than 1% of the total Telnet attack volume 20
Figure 18: Telnet attacks in relation to the attacking IP, ASN, and destination IP addresses 21
Figure 19: US State agency sampled attack traffic .. 22
Figure 20: US State Agency TCP attack .. 22
Figure 21: Source ports of the attack .. 23
Figure 22: Attack byte distribution breakdown ... 24
Figure 23: IoT DDoS attack: top source port ... 24
Figure 24: IoT DDoS Attack —top destination port .. 25
Figure 25: Mobile botnet DDoS attack: top source port ... 25
Figure 26: Mobile botnet DDoS attack: top destination port .. 26
Figure 27: Android botnet all TCP traffic ... 27
Figure 28: DDoS attacks per day by IoT botnets .. 28
DDoS is Commonplace

Distributed Denial of Service (DDoS) attacks in general, and multi-vector attacks designed to avoid mitigations, aren’t anything new, but they have evolved over the years. New protocols are being exploited (NTP? Really? Who knew that time could be a cyber weapon?), and attack volumes of 100+ Gbps are occurring regularly. Gone are the days of on-premises DDoS gear being an adequate mitigation strategy. Most organizations need outside help to deal with attacks of this volume. F5’s Security Operations Center (SOC), which provides such services, has mitigated two attacks this year greater than 400 Gbps, one peaking at almost 450 Gbps. Because of peering and network saturation, it’s highly likely that packets were dropped prior to reaching the Silverline DDoS Protection service provided by the F5 SOC, and the overall bandwidth volume destined for the target was larger than measured by Silverline.

In this report, we look at the nation-states who are conducting attacks that both find more devices to add to botnets and that utilize these botnets for DDoS attacks. Before we get into the details, here are some high-level observations:

- China, a major player in cyber attacks, is unlikely to stop censoring the Internet in its own country or dial back its cyber opposition forces and nation-state espionage activities.

- Global leaders like the US, Canada, and members of the EU will continue to be top monetary targets because they are strong financial sectors. As a result, a lot of today’s malware targets the financial industry specifically, especially since the release of Zeus in 2011.

- Behind China, Russia, Ukraine, Brazil, and India will likely remain the top 5 countries of origin from which DDoS attacks are launched.

- China, followed by Russia, Romania, Brazil, and Vietnam are the most likely locations for Command and Control (C&C) servers.
What's New?

IoT devices are the latest minions in cyber weaponry toolkits

Cyber weaponry has evolved. It started with vulnerable home computers, mostly operated by people who scarcely know what anti-virus software is. Many of these users mistake “odd behavior” from their computer (slow response time, pop-ups) as a sign that it’s “broken” when really it’s been pwned and part of a botnet.

While home computers still make up a significant part of today’s botnet armies, the latest easy targets for conscription are devices in the Internet of Things (IoT).

The world has yet to grasp the IoT and its impact on our daily lives. Virtually everything we come in contact with throughout the day is becoming connected online. The obvious ones are the phones and computers we use to manage our day-to-day activities, do our jobs, access bank accounts, catch up on the latest world news, find a restaurant, get driving directions, watch TV, and play
video games. Less obvious to Internet consumers are the things in your home—refrigerators that cycle through family portraits, residential security cameras that increase your personal sense of security, baby monitors that give you peace of mind, printers—even the car you drive and the airplanes you fly in are all connected online.

In addition to the devices that have become mainstream and “smart” are those that are still smart, but most consumers are unaware of:

- Residential modems for cable and DSL continue to be plagued with vulnerabilities.
- Residential routers, from consumer-friendly, all-in-one devices made by popular manufacturers to the pro-consumer products from lesser known companies seemingly all have CVE reports detailing how uPnP (as an example) can be exploited and used as traffic sources for SSDP-based DDoS attacks.
- The new fancy home security systems that let you lock your door from your cell phone
- Development boards and other DIY project kits
- That free “fancy” thermostat issued by your local municipality or utility company
- The multi-color LED bulbs that change color based on time of day or via an application on your smartphone
- Digital signage, from freeways to shopping malls
- Cameras on the road that monitor traffic, send you speeding tickets, and collect tolls

Even less known, but more threatening from a cyber risk standpoint are public infrastructure Supervisory Control and Data Acquisition (SCADA) systems that are used to monitor and control things like traffic lights at intersections, air traffic control systems, the water systems and power grids you depend on, the 911 system, and the range of systems used by hospitals (everything from breathing systems to physical doors).

Welcome to cyber space and the IoT.
The Interest is High

Any device that’s connected online is subject to vulnerabilities and therefore exploitable. What’s concerning about the IoT is that it’s littered with devices and software that were never designed with security in mind. These devices—and the applications that run them—aren’t like typical Internet applications that go through vulnerability testing cycles, nor have they been designed with security in mind from a remote management standpoint. And because most come with default passwords, some which users never change and some you actually can’t, these IoT devices are the latest minions in hackers’ cyber weaponry toolkit. This, in conjunction with DDoS attack tools being readily available to bad guys, make for a very vulnerable world in the future.

Before going into detail on the IoT botnets we are tracking that are launching DDoS attacks, we want to set the stage for how interested cyber threat actors are in targeting IoT devices in a likely effort to expand their cyber weaponry tools.

Hunting for IoT devices with default passwords

We are observing a steady increase of brute force activity hunting for IoT devices. These activities are targeting vendor default passwords in a likely effort to expand their IoT toolsets. Trending this month is China looking for IoT devices in the US, Canada looking for IoT devices in Russia, and the UK looking for IoT devices in China.
Figure 1: Default Password Scanning Major Trends

China is the overwhelming leader in telnet brute force scans looking for vulnerable IoT devices throughout the past 6 months. All other countries are distant followers that vary drastically when comparing the past 30 days of activity against the sum of the last 6 months.

SSH brute force attack numbers and trends

We have collected 6,293,889 Secure Shell (SSH) brute force attacks in the past 6 months. They were sourced from 3,385 autonomous system numbers (ASNs) and 28,616 IP addresses.

Daily SSH brute force attack volumes over the past six months have remained consistent with infrequent daily spikes.
Figure 2: Six months of SSH brute force attacks
Viewing the average number of attacks by day of week, there is relative consistency with a slight dip on Wednesdays.

Figure 3: SSH brute force attacks average day of week
Looking at the average daily volume of brute force SSH attacks by month, volume steadily declined from February through May and then began climbing again.
Figure 4: SSH Brute force attacks by month (daily average)

Telnet brute force attack numbers and trends

We have collected 2,174,216 Telnet brute force attacks in the past 6 months. The Telnet attacks were sourced from a much broader scope of ASN’s, coming in at a total of 8,516, which is a much larger pool of IP addresses to the tune of 543,819.

Telnet scans are our rising attack vector and have spiked significantly over the past month.
Figure 5: Telnet attacks increasing slow and then suddenly
Telnet scans have no consistency throughout the days of the week:

Figure 6: Telnet Brute Force by Day of Week Average
If we trend line the current attack pattern, we expect to see Telnet brute force attacks on a significant rise.
July Remainten spike

The attacks rise in late June early July is thanks to Remainten, an IoT botnet composed largely of home routers, gateways and wireless access points running Linux.

Anatomy of Attack with the Remainten Toolkit

1. Initial bootstrapped servers (C&C servers) established and set as download servers.

2. Attacker begins scanning for new victim hosts that have Telnet running.

3. Brute force against Telnet with varying dictionaries; starts and is distributed across infected hosts.

4. Upon successful authentication, Remainten attempts to identify the host’s architecture and requests the appropriate download (pack) from C&C server(s).

5. Attempts to identify and subsequently kill additional rootkits and malware present on the host.

6. Connects to C&C server(s) via commonly used IRC.
Telnet brute force attack origin countries

It’s no surprise China is the most persistent at hunting for vulnerable IoT devices. When looking at the prior six months, the US is #2 in overall scanning traffic observed. When looking at the last 30 days, the US doesn’t show up.

Top 10 countries scanning

The following graphs show you the top 10 countries of origin for the Telnet scans we’ve identified in the past 6 months in comparison to the last 30 days.

Figure 8: Telnet brute force attacks by country - last 30 days
We’ve seen significant change in country activity over the past 30 days. 60% of the countries who were on the top 20 activity list in the past 6 months did not show up on the top 20 actors list for the past 30 days.
To give an idea of volume, the graph below shows the total Telnet brute force scans observed over the past 30 days from the top 20 countries. China is conducting more brute force scans than the other top 19 combined.

Figure 10: Top 20 Countries hunting for IoT devices with Telnet brute force scans - last 30 days
Telnet and SSH attacks by ASN

ASNs participating in Telnet and SSH brute force attacks vary day by day. 92 ASNs comprise the 2.1+ million Telnet brute force scans conducted in the past 30 days referenced in Figure 10 above. Four of them are China telecom, backbone, and peering providers and make up for 57% of the total.

Separating out ASNs participating in Telnet versus SSH attacks, we’re seeing a steady use of ASNs in the SSH attacks indicating the threat actors are consistent.
The brute forcing Telnet attacks fluctuate and are increasing significantly as of lately indicating two things: they are largely responsible for the total attack volume spike in June / July, and are likely to have new threat actors coming on board.

Why are Telnet attacks getting so popular?

A large number of IoT devices leverage Telnet remote administration, which is likely protected with a vendor default password. Which is not “protected” at all.
Telnet scans have increased 140% year over year from July 2015

Top 1000 ASNs launching SSH attacks

The balance of threat actor ASNs in their contribution to the total attacks is weighted heavily in the top 6. The top 6 ASNs represent less than 1% (.6%) of ASNs participating but are responsible for 50% of the attacks with the top ASN contributing 22% of the total attack volume.

50% of SSH attacks were generated from top 6 ASN threat actors

![Top 1000 ASNs Lauching SSH Attacks](image)

Figure 14: Top 1000 ASNs and their contribution to the total SSH attack volume

The top 24 attacking ASNs (contribute >1% individually) combine for a total of 67% of the total attacks. The bottom 976 attacking ASNs contributed an average of .03% to the total attack volume for a combined total of 33%.
Top 1000 ASNs launching Telnet attacks

An analysis of the Top 1000 ASNs participating in Telnet attacks netted some very interesting results. Contribution to the total attack number is very evenly spaced throughout the 1000 ASNs with 968 of them producing less than a half of 1% each to the total. The average contribution per ASN is .10% and the top threat actor only contributed to 8% of the total attacks.

50% of Telnet attacks were generated from top 13 ASN threat actors
The top 32 attacking ASNs (contribute >1% individually) combine for a total of 66% of the total attacks. The bottom 968 attacking ASNs contributed an average of .035% to the total attack volume for a combined total of 34%.

Figure 17: Top 32 ASNs contributing more than 1% of the total Telnet attack volume
The scatter chart shown in Figure 18 is a great representation of the current scanning going on, which is the precursor to botnet creation.

IoT Botnets DDoSing

Several outlets have reported DDoS attacks with the "lizard stresser" tool which leverages home routers. Recent data confirms active botnets generating DDoS attacks from a new variant and mash-up of older tools refactored for infecting additional architectures such as x86_64, MIPS, ARM.
IoT Botnets attacked multiple US state agencies

We are tracking an IoT botnet leveraging 52 thousand unique IP addresses that recently targeted a US State entity on port 80. The attack lasted roughly 30 minutes between shortly after 11:30 PM on July 18th to shortly after midnight on July 19th.

![Figure 19: US State agency sampled attack traffic](image)

The destination port of the attack was 99 percent port 80 using protocol TCP.

![Figure 20: US State Agency TCP attack](image)

Attacking sources used random unprivileged ports primarily between 20000-60000 in addition to modest use of port 53 and protocol UDP.
Figure 21: Source ports of the attack
We witnessed a similar SYN flood attack targeting port 80 on another US government target that was 2.3 Gbps logged that we cannot provide more details on.

How much can one device do?

In the graph below, you'll see that each infected IoT device is contributing only 0.1 percent to the total attack. What’s interesting and frankly, scary, about IoT devices is the virtually unlimited number available for compromise and the damage they can do as a collective whole, once they’ve joined a botnet. When you can get hundreds of thousands of small devices participating in a botnet, none of them need to have 100 Mbps capacity on their own.
Android botnet DDoS attack

Another attack witnessed against the US State Agency’s IP space came from an Android phone botnet. In this attack, each infected device does not contribute more than 0.1% to the total attack.
Source Port

<table>
<thead>
<tr>
<th>Source Port</th>
<th>Protocol</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>39989</td>
<td>TCP</td>
<td>0.0%</td>
</tr>
<tr>
<td>37880</td>
<td>TCP</td>
<td>0.0%</td>
</tr>
<tr>
<td>28111</td>
<td>TCP</td>
<td>0.0%</td>
</tr>
<tr>
<td>31115</td>
<td>TCP</td>
<td>0.0%</td>
</tr>
<tr>
<td>46034</td>
<td>TCP</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Figure 25: Mobile botnet DDoS attack: top source port

Destination Port

<table>
<thead>
<tr>
<th>Destination Port</th>
<th>Protocol</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>TCP</td>
<td>99.9%</td>
</tr>
<tr>
<td>1785</td>
<td>UDP</td>
<td>0%</td>
</tr>
<tr>
<td>19603</td>
<td>UDP</td>
<td>0%</td>
</tr>
<tr>
<td>33337</td>
<td>UDP</td>
<td>0%</td>
</tr>
</tbody>
</table>

Figure 26: Mobile botnet DDoS attack: top destination port
The Android botnet is all TCP traffic.

Figure 27: Android botnet all TCP traffic
IoT DDoS Attacks Increasing

The DDoS attacks we are monitoring from IoT botnets have been steadily increasing with spikes on July 6th and 12th of this year.

![DDoS Attacks by Day](image)

Figure 28: DDoS attacks per day by IoT botnets

Where are the C & Cs? China, China, China

We can’t share with you the specific details, but what we can say is that 90 percent of IoT bots we are tracking that are launching DDoS attacks are in China, 10 percent in the US. The C&C server ASNs also correlate with the ASNs we found brute force attacking looking for more vulnerable devices.

TCP Attack Abuse Warnings!

What’s most interesting in the attacks we are observing is that 70% of the packets are not originating from a spoofed source address as many of the originating networks (the networks the IoT devices reside on) are following BCP-38 and, due to the attack vectors, are relying on TCP instead of UDP.

As a result, our partner Loryka sends an average of 30,000 MARF (“Abuse Reporting Format”) messages daily!
Conclusion

The blessing and curse of IoT devices is that they are stateless devices that reboot under stress, which means they have limited capacity for launching attacks, but once recycled, they get re-infected and leveraged all over again. We proved you don’t need a lot of bandwidth per device when you can leverage so many devices at once. But it’s becoming abundantly clear that these devices have seemingly endless attack potential, given their vast quantity and vulnerability state, and should be taken very seriously by the global Internet.

It’s also clear that threat actors are targeting IoT devices around the world with increasing frequency and evolving their toolsets as new devices are released. We are already seeing the results of their continued efforts to compromise IoT devices and continue the trend that nearly everything connected to the Internet can be exploited.

So, what’s next? These devices will continue to get exploited and used as weapons to attack individuals and businesses until they are properly dealt with by their manufacturers.

The idea that individuals must protect themselves and every network is responsible for mitigating their own attacks won’t scale in the IoT. The bad guys will win if we don’t start from within and remediate basic access control vulnerabilities within each IoT device.

Until manufacturers become good “netizens,” companies must update their detection mechanisms for IoT DDoS attacks since their behavior patterns are different (that is, they have lots of smaller, not typically monitored packet sizes). On the flip side, counter measures are just like those for any other DDoS attack, so at least organizations can mitigate the attacks once identified—assuming they have appropriate DDoS mitigation devices in place or a service provider to help.

What does the future look like?

How many IoT devices have management ports online protected by vendor default passwords?

- Delivery driver scanners
- Transportation cards
- Barcode scanners
- Elevators
- Your Raspberry Pi developer kit

Think of everything around us that’s online.
ABOUT F5 LABS

F5 Labs combines the threat intelligence data we collect with the expertise of our security researchers to provide actionable, global intelligence on current cyber threats—and to identify future trends. We look at everything from threat actors, to the nature and source of attacks, to post-attack analysis of significant incidents to create a comprehensive view of the threat landscape. From the newest malware variants to zero-day exploits and attack trends, F5 Labs is where you’ll find the latest insights from F5’s threat intelligence team.

ABOUT LORYKA

Loryka is a team of dedicated researchers that monitor and investigate emerging attacks, advanced persistent threats, and the organizations and individuals responsible. The team also develops research tools to identify, investigate, and track ongoing attacks and emerging threats.

For more information, visit https://loryka.com