
WHITEPAPER

 Get Me to the Cluster
 Providing External Access to Services in Kubernetes
 with NGINX and BGP
 By Chris Akker
Solutions Architect – F5 NGINX

https://www.nginx.com

2GET ME TO THE CLUSTER

Table of Contents
The Challenge Enabling External Access to Kubernetes Services . 4

A Solution Combining Kubernetes Ingress, NGINX, and BGP .7

The iBGP Network . 9

Project Calico CNI Networking . 9

NGINX Ingress Controller Based on NGINX Plus . 9

NGINX Plus as a Reverse Proxy at the Edge . 9

Deploying the Solution .10

Configuring the iBGP Network .10

Installing and Configuring a Kubernetes Cluster with Calico . 11

Configuring Calico IP Pools . 11

Configuring iBGP Peering on the Kubernetes Nodes . 13

Deploying the NGINX Ingress Controller Based on NGINX Plus .15

Configuring the NGINX Plus Edge Server . .16

Installing NGINX Plus . 17

Installing Quagga and Configuring BGP . 17

Testing the BGP Configuration . 23

Configuring Layer 4 Load Balancing on the NGINX Edge Server . 27

Summary and Next Steps .31FP
O

3GET ME TO THE CLUSTER 3

WE EXPLORE AND PROPOSE A
SOLUTION TO RESOLVE THE
CONFLICT BETWEEN NETWORK
AND APPLICATIONS TEAMS

You are a Network Architect, Engineer, or Operator – and those Kubernetes Apps people
are driving you crazy! They keep asking you for solutions, environments, virtual IP addresses,
DNS names, and customer access to applications running in Kubernetes clusters . They whine
and complain about the ticketing process, status updates, and delays – and then they escalate!
They build apps overnight, and expect them online in the morning, before you’ve even had
your first cup of coffee . . .

You are ready to pull your hair out!

You are a Modern Apps Developer, working with the cloud, containers, and Kubernetes to
build applications that support your company’s business demands . You use an arsenal of
open source code and tools as well as some commercial products . You are being asked
to build and deliver high-quality digital experiences that set your company apart and keep
it ahead of the competition . The ecosystems of hardware, software, and even some cloud
providers move at relatively glacial speeds, impeding progress and slowing your application
delivery times . Every time you need something, especially from the Network team, you are
greeted with a daunting, infuriating gauntlet of requirements, processes, procedures, and
those hideous tickets . . .

You are ready to pull your hair out!

Sound all too familiar? Network and Applications teams often have different goals, priorities,
jobs, mandates, restrictions – the list goes on and continues to evolve . But at the end of the
day, both teams must be successful to deliver today’s modern applications .

How can you address the needs of both teams and make them successful, enabling the
business to move forward at the required business and development velocity?

There must be a way to solve this problem . . .

Don't go bald, keep reading!

In this whitepaper, we explore and propose a solution to resolve the conflict between Network
and Applications teams by providing both with recipes for success . It’s a solution that uses
modern networking tools, protocols, and existing architectures, and is designed to be
inexpensive and easy to implement, manage, and support . It’s based on standards and easily
deployed and tested in most Kubernetes environments in a few hours .

The solution is designed for Kubernetes clusters hosted on premises in your data center,
with Kubernetes nodes running on bare metal or traditional Linux virtual machines (VMs) .
Standard Layer 2 switches and Layer 3 routers provide the networking for communications
in the data center .

We intentionally are not trying to provide this solution for cloud-hosted Kubernetes clusters,
because cloud providers don’t allow us to control the core networking in their data centers
nor the networking in their managed Kubernetes environment .

4GET ME TO THE CLUSTER 4

T H E C H A L L E N G E : E N A B L I N G E X T E R N A L A C C E S S T O
K U B E R N E T E S S E R V I C E S

In an on-premises Kubernetes cluster, you generally deploy application pods using a
Deployment or DaemonSet manifest . Using any of the standard Container Network
Interface (CNI) plug-ins, each pod is assigned a unique ClusterIP address, allocated from a
pool of IP addresses chosen by the scheduler that starts and runs pods on the Kubernetes
node . No matter how you manage the pods or which CNI you are using, the end result is
the same: each pod has a unique IP address assigned by Kubernetes .

ClusterIP addresses are drawn from a private, non-routable IP address space (subnet),
often called the overlay network . Non-routable means that the ClusterIP address cannot
be reached from outside the cluster . So a problem arises when you want clients or users
external to the cluster to have access to one or more pods or services .

Kubernetes Cluster (On Prem)

Example
Service

Pod

Pod

example.com ??????

example.com ???

IN AN ON-PREMISES
KUBERNETES CLUSTER,
YOU GENERALLY DEPLOY
APPLICATION PODS
USING A DEPLOYMENT OR
DAEMONSET MANIFEST

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/

5GET ME TO THE CLUSTER 5

The Kubernetes network standard for exposing application pods offers four different options:
Service, NodePort, LoadBalancer, and Ingress . Our solution uses the last one, the Ingress,
as the preferred method for exposing pods to the outside world . But it’s worth reviewing
why the other options are not suitable:

• Service – Represents a common group of pods running the same apps . This is great for
internal, pod-to-pod communication, but it’s defined and visible only inside the cluster
and so doesn’t really help us expose apps and services externally .

• NodePort – Opens a specific port on every node in the cluster, and forwards any traffic
sent to the node on that port to the corresponding app . But NodePort is not an ideal
solution for several reasons:

 – You have to use high-numbered TCP ports; the well-known lower port numbers are
not allowed

 – You have to coordinate these port numbers with other apps

 – You can’t share common TCP ports among different apps (each app must have its
own unique port)

 – Not all pods run on every node, so there might be an additional cluster network hop
required, which introduces latency

 – The configuration is static, which compromises the dynamic and ephemeral nature
of Kubernetes

example.com

Ports 30000–32767

Kubernetes Cluster (On Prem)

Example
Service

Pod

Pod

NodePort

OUR SOLUTION USES
THE INGRESS AS THE
PREFERRED METHOD

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/#type-nodeport

6GET ME TO THE CLUSTER 6

• LoadBalancer – Creates a network path from the outside world to your Kubernetes nodes
using the NodePort definitions on each node . It often uses “well-known” low-numbered
application TCP ports and translates them into the high-numbered TCP ports of NodePort .

Example
Serviceexample.com

Ports 30000–32767Ports 80-1024

Kubernetes Cluster

Pod

Pod

NodePortLoadBalancer

The LoadBalancer object is the “easy button” for cloud-hosted Kubernetes clusters,
because AWS, Google Cloud Platform, Microsoft Azure, and most other cloud providers
support it as an easily configured feature that works well and provides a public IP
address and matching DNS A record for a service – exactly what we need for external
access! But a LoadBalancer doesn’t actually run in the cluster . Instead, it’s usually part
of the cloud provider’s software-defined networking (SDN) infrastructure, which you
cannot see, control, or directly access .

Perhaps more saliently to our solution, for on-premises clusters there is no equivalent
to the LoadBalancer object!

You probably already have a load-balancer appliance on your network, so can you use it
to provide external access? There are lots of docs on how to configure a TCP load-balancer
appliance at the edge of the Kubernetes cluster, with instructions for mapping the pod IP
address to the IP address and port of Kubernetes nodes, configuring NodePort, assigning
pool membership, setting up virtual IP addresses (VIPs), and so on .

https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer

7GET ME TO THE CLUSTER 7

But with that approach you have to use high-numbered TCP ports (~30,000 and higher),
and then the ports are opened on every host, whether the pod is running on that host or
not . . . and when traffic arrives on a Kubernetes node where the pod is not running, the
outcome is not ideal – the traffic gets bounced to another node, adding internode crosstalk
and latency .

Another problem is that if you have multiple teams sharing the same cluster, you need a
TCP port allocation and reservation system, yet another manual process that diminishes the
value of Kubernetes ephemerality in the first place .

Further, even when using NodePort, it is nearly impossible to reconfigure routers and load
balancers quickly enough, no matter how much automation is in place and how many API calls
you make to those devices . This results in a serious configuration mismatch: new application
pods are ready but the network routing parameters have not been updated . Even worse, when
pods restart and get a new IP address, the network routing system might still be pointed
to the pod’s previous IP address, potentially sending customers to the dreaded HTTP 500
Black Hole just created in the center of your cluster . . . not a good customer experience!

The difficulty of making Kubernetes applications accessible by external clients is often the
nexus of conflict between the Network and Application teams . As pods change, so must
networking change to keep external access reliable and consistent .

It’s a pain, in fact . . . oh wait, pull out more hair!

A S O L U T I O N C O M B I N I N G K U B E R N E T E S I N G R E S S ,
N G I N X , A N D B G P

But good news – there’s one more option to explore: the Kubernetes Ingress object, which
addresses some of these ugly NodePort allocation and tracking issues . It’s designed specifically
for traffic flowing from outside the cluster to pods in the cluster (north-south traffic) . The design
of Kubernetes dictates that the Ingress object is implemented by an Ingress controller . Not all
Ingress controllers are the same, however, and our solution leverages the enterprise-class
NGINX Ingress Controller from F5 NGINX, which is based on the commercially supported
version of NGINX, NGINX Plus .

No more hair pulling, we have a solution for you!

Even better, we’re not just having a high-level theoretical discussion about how a solution
might work . We’re providing complete, step-by-step instructions – see Deploying the Solution .
First, though, a bit more information about the solution’s architecture .

Our solution to the challenges of providing external access to Kubernetes applications
combines NGINX and the Border Gateway Protocol (BGP) . Yes, that’s right, the world famous
NGINX software and a Layer 3 routing protocol . “No way!” you say, “it can’t be that easy!”

WE’RE PROVIDING COMPLETE,
STEP-BY-STEP INSTRUCTIONS

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://www.nginx.com/products/nginx-ingress-controller/

8GET ME TO THE CLUSTER 8

Actually, the solution uses the NGINX Plus-based NGINX Ingress Controller and a second
NGINX Plus server as a reverse proxy . More exactly, the solution has these components:

1 . BGP routing, implemented as an internal BGP (iBGP) autonomous system (AS) in the
data center

2 . The CNI plug-in from Project Calico for networking in the Kubernetes cluster, with
BGP enabled

3 . NGINX Ingress Controller based on NGINX Plus, in the Kubernetes cluster

4 . NGINX Plus as a reverse proxy at the edge of the Kubernetes cluster, with Quagga
for BGP

The diagram depicts the solution architecture . Note that it indicates which protocols the
solution components use to communicate, and (unlike many such diagrams) not the order in
which data is exchanged during request processing .

NGINX Edge Server
nginxedge1
172.16.1.88

• NGINX Plus DNS
resolver queries
kube-dns

• TCP L4 Stream Load
Balancing

• Quagga BGP routing
software package

BGP
AS 64512

BGP mesh with
K8s nodes,
NGINX Plus Edge
server, and data
center network

Data Center
Backbone

172.16.1.0/24

Kubernetes

NGINX Plus-based
Ingress Controller

Cluster IPs using:
10.1.x.y and

nginx-ingress-svc knode1 -
172.16.1.81

kcontrol-
172.16.1.80

knode2 -
172.16.1.82

BGP

BGP

BGP

HTTP

BGP

DNSDNS

Co�ee /
co�ee-svc

Tea /
tea-svc

kube-dns #1
10.1.0.41

kube-dns #2
10.1.0.42

9GET ME TO THE CLUSTER 9

Let’s look at the four components in detail .

The iBGP Network

The solution leverages the existing iBGP network that most modern enterprise data centers
already have in place . (If you don’t have one, you’ll need to set it up to use the solution;
see Configuring the iBGP Network for more details .) We won’t take up 20 minutes of your
time here explaining why data centers use iBGP – just suffice it to say that iBGP works well,
has many benefits, and is well-known and supported by most Network teams . Our solution
leverages the many options for routing and controlling IP traffic that come with using a
private autonomous system (AS) number for BGP .

Project Calico CNI Networking

We use Project Calico as the CNI overlay for the Kubernetes, because it supports BGP .
An advantage of Calico is that it works as a routing method overlay network, rather than
an encapsulation method overlay . This is important to the Networking team, because
Ethernet packets remain in their native format, making them easy to see, capture, and
troubleshoot with common tools like ping, curl, dig, traceroute, tcpdump, and ssldump .
Encapsulation overlays that modify packets can make it more difficult to use these
tried-and-tested tools – you have to unwrap the packets to see what’s really going on .

Calico also enables you to control the IP address pools allocated for the pods, which helps
you quickly identify any networking issues – simply knowing the pod’s IP address tells you
immediately on which Kubernetes node the pod is running .

NGINX Ingress Controller Based on NGINX Plus

While there are many Ingress controllers to choose from, the advanced features in our
NGINX Ingress Controller based on NGINX Plus provide a superior solution and user
experience . The most compelling feature for our solution is the ability of NGINX Plus to
watch the service endpoint IP addresses of the pods and automatically reconfigure the list
of “upstreams” with no loss of application traffic . The Application team can take advantage
of NGINX Plus’s many other enterprise-grade Layer 7 HTTP features, including active health
checks, host and URI request routing, mutual TLS (mTLS), authentication, and header controls .

NGINX Plus as a Reverse Proxy at the Edge

This is an NGINX Plus server that sits at the edge of the Kubernetes cluster and provides
the path between the switches and routers running in the data center and the internal
network in the Kubernetes cluster . The remainder of this whitepaper refers to this as the
NGINX edge server . It functions in the on-premises cluster as a replacement for the missing
Kubernetes LoadBalancer object and uses BGP to communicate with other components in
the cluster about routing .

THE ADVANCED FEATURES
IN OUR NGINX INGRESS
CONTROLLER BASED ON
NGINX PLUS PROVIDE A
SUPERIOR SOLUTION AND
USER EXPERIENCE

https://projectcalico.docs.tigera.io/about/about-calico

10GET ME TO THE CLUSTER 10

We use NGINX Plus on the edge server to leverage the same set of enterprise features for
automatically tracking the dynamic changes to ephemeral pods in the Kubernetes cluster .
Specifically, we need to track the NGINX Ingress Controller instances to make sure we can
route traffic to them automatically .

D E P L OY I N G T H E S O L U T I O N

We recommend that you start with a fresh Kubernetes cluster to reduce the chances of
causing a serious network outage on an existing cluster . The CNI network layer is responsible
for managing and controlling almost all the traffic in the cluster, so to err on the side of caution
do not deploy the solution in an existing cluster unless you are already using Calico CNI .

In particular, if you use an existing cluster you must remove any other CNI overlay (Cillium,
Flannel, Weaver, etc .) that is already deployed, and doing so stops all traffic!

Configuring the iBGP Network

The solution makes use of the existing iBGP network in your data center to interconnect
the Kubernetes nodes, the cluster IP network, and the NGINX edge server .

Make note of the following existing iBGP parameters, because you need to configure iBGP on
the peers in the Kubernetes cluster and the NGINX edge server to match, in Configuring iBGP
Peering on the Kubernetes Nodes and Installing Quagga and Configuring BGP respectively .

• iBGP autonomous system (AS) number

• iBGP IP networking details (subnet info)

• Any other settings in the existing iBGP network that need to be configured on all
peers for successful operation

You also need the IP addresses of all iBGP hosts, including the Kubernetes nodes and the
NGINX edge server . For the suggested addressing scheme for the Kubernetes nodes, see
Configuring Calico IP Pools .

If you’re not on the Network team, ask a team member for help gathering these parameters
if necessary . Similarly, you can partner with the Network team to create an iBGP network if
the data center doesn’t already have one .

THIS SOLUTION MAKES
USE OF THE EXISTING
iBGP NETWORK IN YOUR
DATA CENTER

11GET ME TO THE CLUSTER 11

Installing and Configuring a Kubernetes Cluster with Calico

1 . Follow the instructions in the Quickstart for Calico on Kubernetes to set up a new
Kubernetes control node and install Calico . Then add more (worker) nodes as needed
for your environment . The solution uses one control node and two worker nodes .

2 . Follow the instructions in the Calico documentation to install the calicoctl CLI on the
Kubernetes control node .

Configuring Calico IP Pools

Now configure Calico IP pools, which are ranges of IP addresses that Calico uses for workload
endpoints (the virtual network interfaces a workload uses to connect to the Calico network) .

The solution uses a Class C IP subnet for each Kubernetes node’s pod IP address allocation,
with the third octet in the subnet matching the index number at the end of the Kubernetes
node name, as shown in the table . The reason for this scheme will become apparent when
we get to the BGP routing tables in Step 9 of Installing Quagga and Configuring BGP .

KUBERNETES NODE IP SUBNET
kcontrol 10 .1 .0 .0/24
knode1 10 .1 .1 .0/24
knode2 10 .1 .2 .0/24
... ...
knodeX 10 .1 .X .0/24

As another example, the subnet for knode5 is 10 .1 .5 .0/24 .

Note: This addressing scheme is not mandatory, and the Calico default of a /26 subnet for
each node works just fine . However, allocating a /24 subnet with the third octet matching
the index in each worker node hostname makes it easier to read the BGP routing tables,
find each pod’s running host, and troubleshoot . Plus, in some environments, the smallest
allowable subnet for BGP route table entries is a /24 network .

1 . Create a file called ippools.yaml with a section for each node, specifying the appropriate
values in these fields:

• metadata.name

• spec.cidr

• spec.nodeSelector

https://projectcalico.docs.tigera.io/getting-started/kubernetes/quickstart
https://projectcalico.docs.tigera.io/maintenance/clis/calicoctl/install

12GET ME TO THE CLUSTER 12

This example configures the three nodes in the solution .

apiVersion: projectcalico.org/v3
kind: IPPool
metadata:
 name: pool0
spec:
 cidr: 10.1.0.0/24
 blockSize: 24
 ipipMode: CrossSubnet
 natOutgoing: true
 disabled: false
 nodeSelector: kubernetes.io/hostname == 'kcontrol.demo.local'

apiVersion: projectcalico.org/v3
kind: IPPool
metadata:
 name: pool1
spec:
 cidr: 10.1.1.0/24
 blockSize: 24
 ipipMode: CrossSubnet
 natOutgoing: true
 disabled: false
 nodeSelector: kubernetes.io/hostname == 'knode1.demo.local'

apiVersion: projectcalico.org/v3
kind: IPPool
metadata:
 name: pool2
spec:
 cidr: 10.1.2.0/24
 blockSize: 24
 ipipMode: CrossSubnet
 natOutgoing: true
 disabled: false
 nodeSelector: kubernetes.io/hostname == 'knode2.demo.local'

2 . Apply the configuration to create the IP pools:

kcontrol$ calicoctl create -f ippools.yamlcalicoctl create -f ippools.yaml

3 . Verify that a pool was created for each node:

kcontrol$ calicoctl get ippools calicoctl get ippools
NAME CIDR SELECTOR
pool0 10.1.0.0/24 kubernetes.io/hostname == 'kcontrol.demo.local'
pool1 10.1.1.0/24 kubernetes.io/hostname == 'knode1.demo.local'
pool2 10.1.2.0/24 kubernetes.io/hostname == 'knode2.demo.local'

13GET ME TO THE CLUSTER 13

If you want to be extra sure that networking is working correctly, follow the Test networking
instructions provided by Calico .

For more information about configuring IP pools, see the Calico documentation .

Configuring iBGP Peering on the Kubernetes Nodes

In this solution, we configure iBGP peering as a full mesh . (For very large clusters, Calico also
supports the BGP Route Reflector option, which we won’t discuss further here .)

1 . Create a file called bgppeers.yaml with a section for each node, specifying the appropriate
values in these fields:

• metadata.name

• spec.peerIP

• spec.asNumber

apiVersion: projectcalico.org/v3
kind: BGPPeer
metadata:
 name: bgppeer-global-kcontrol
spec:
 peerIP: 172.16.1.80
 asNumber: 64512

apiVersion: projectcalico.org/v3
kind: BGPPeer
metadata:
 name: bgppeer-global-knode1
spec:
 peerIP: 172.16.1.81
 asNumber: 64512

apiVersion: projectcalico.org/v3
kind: BGPPeer
metadata:
 name: bgppeer-global-knode2
spec:
 peerIP: 172.16.1.82
 asNumber: 64512

apiVersion: projectcalico.org/v3
kind: BGPPeer
metadata:
 name: bgppeer-global-nginxedge
spec:
 peerIP: 172.16.1.88
 asNumber: 64512

IN THIS SOLUTION, WE
CONFIGURE iBGP PEERING
AS A FULL MESH

https://projectcalico.docs.tigera.io/getting-started/kubernetes/hardway/test-networking
https://projectcalico.docs.tigera.io/getting-started/kubernetes/hardway/configure-ip-pools
https://projectcalico.docs.tigera.io/networking/bgp

14GET ME TO THE CLUSTER 14

2 . Apply the configuration:

kcontrol$ calicoctl create -f bgppeer.yamlcalicoctl create -f bgppeer.yaml

3 . Check the Calico BGP configuration, verifying that the value in the MESHENABLED field
is true:

kcontrol$ calicoctl get bgpConfigurationcalicoctl get bgpConfiguration
NAME LOGSEVERITY MESHENABLED ASNUMBER
default Info true 64512

4 . Check the BGP peering configuration:

kcontrol# calicoctl get bgpPeer calicoctl get bgpPeer
NAME PEERIP NODE ASN
bgppeer-global-kcontrol 172.16.1.80 (global) 64512
bgppeer-global-knode1 172.16.1.81 (global) 64512
bgppeer-global-knode2 172.16.1.82 (global) 64512
bgppeer-global-nginxedge 172.16.1.88 (global) 64512

5 . Check that the BGP peering and mesh is working as expected:

kcontrol# calicoctl node status calicoctl node status
Calico process is running.

IPv4 BGP status
+ --------------- + ------------------- + ----- + --------- + --------------+
| PEER ADDRESS | PEER TYPE | STATE | SINCE | INFO |
+ --------------- + ------------------- + ----- + --------- + --------------+
| 172.16.1.81 | node-to-node mesh | up --| 22:56:17 | Established |
| 172.16.1.82 | node-to-node mesh | up --| 22:56:19 | Established |
| 172.16.1.88 | global | start | 22:54:55 | Connect |
| | | | | Socket: |
| | | | | Host is |
| | | | | unreachable |
| | | | | #nginxedge |
+ --------------- + ------------------- + ----- + --------- + --------------+

IPv6 BGP status
No IPv6 peers found.

Note: The Host is unreachable message for the NGINX edge server is appropriate,
because it’s not yet configured for BGP . You’ll do that in Configuring the NGINX Plus
Edge Server and check the status of the NGINX edge server again there .

For more information about Calico BGP peering, see the Calico documentation .

https://projectcalico.docs.tigera.io/reference/calicoctl/get
https://projectcalico.docs.tigera.io/getting-started/kubernetes/hardway/configure-bgp-peering

15GET ME TO THE CLUSTER 15

Deploying the NGINX Ingress Controller Based on NGINX Plus

The solution uses the NGINX Ingress Controller based on NGINX Plus, running on any
supported Kubernetes platform that also supports the Calico CNI . If you have an NGINX Plus
subscription, you can use your existing SSL certificate and key to access the NGINX Plus
repo and build your own NGINX Ingress Controller as instructed in the documentation .

If you don’t have an NGINX Plus subscription, start a free 30-day trial .

Note: The solution works only with the NGINX Plus-based NGINX Ingress Controller
from NGINX . No open source Ingress controller has the necessary features, including the
one maintained by the Kubernetes community (kubernetes/ingress-nginx) and the one
from NGINX based on NGINX Open Source (nginxinc/kubernetes-ingress) . If you are not
sure which Ingress Controller you are running, see our blog .

As previously mentioned, the solution is intended for on-premises Kubernetes deployments
and doesn’t work in public clouds, where the provider only supports its own choice of CNI
and BGP implementations . Because an on-premises Kubernetes cluster doesn’t have a
LoadBalancer service for exposing the IP address and port of the NGINX Ingress Controller,
we instead reach its ClusterIP address directly using BGP .

THIS SOLUTION USES THE
NGINX INGRESS CONTROLLER
BASED ON NGINX PLUS

https://docs.nginx.com/nginx-ingress-controller/intro/overview/
https://docs.nginx.com/nginx-ingress-controller/installation/pulling-ingress-controller-image/
https://www.nginx.com/free-trial-request/
https://github.com/kubernetes/ingress-nginx
https://github.com/nginxinc/kubernetes-ingress
https://www.nginx.com/blog/guide-to-choosing-ingress-controller-part-4-nginx-ingress-controller-options
https://docs.nginx.com/nginx-ingress-controller/intro/overview/

16GET ME TO THE CLUSTER 16

To implement this:

1 . If you don’t already have an NGINX Ingress Controller running, install and deploy one
using the instructions in the documentation .

2 . Create a file called nginx-ingress-svc.yaml with the following contents . Change the
values in these fields as appropriate for your cluster:

• metadata.name

• metadata.namespace

apiVersion: v1
kind: Service
metadata:
 name: nginx-ingress-svc
 namespace: nginx-ingress
spec:
 type: ClusterIP
 clusterIP: None
 ports:
 - port:80
 targetPort: 80
 protocol: TCP
 name: http
 - port: 443
 targetPort: 443
 protocol: TCP
 name: https
 selector:
 app: nginx-ingress

3 . Apply the configuration:

kcontrol# kubectl apply -f nginx-ingress-svc.yaml kubectl apply -f nginx-ingress-svc.yaml

Configuring the NGINX Plus Edge Server

Set up and configure an NGINX Plus edge server, running as a reverse proxy for TCP
traffic at Layer 4, to discover and load balance the NGINX Ingress Controllers running in the
Kubernetes cluster . You also install a BGP routing package of your choice (the solution uses
Quagga) . You can set up two NGINX edge servers for high availability if you wish, but these
instructions cover just one .

The solution leverages the dynamic DNS resolution feature in NGINX Plus . To learn more, see
our blog and the reference documentation .

https://docs.nginx.com/nginx-ingress-controller/installation/installation-with-manifests/
https://www.quagga.net
https://www.nginx.com/blog/dns-service-discovery-nginx-plus/#nginx-plus-exclusive-methods
https://nginx.org/en/docs/stream/ngx_stream_upstream_module.html#resolver

17GET ME TO THE CLUSTER 17

Installing NGINX Plus

Follow the installation instructions in the NGINX documentation .

Installing Quagga and Configuring BGP

The solution uses the BGP routing software from Quagga, which uses a configuration
syntax very similar to Cisco IOS . There are several other BGP routing software packages
that also run on most Linux distributions, and for most of them it’s straightforward to adapt
these instructions .

1 . On the NGINX edge server, sign on to an account with root privilege or equivalent
sudo access . The commands in this whitepaper do not use sudo .

2 . Use the OS package manager to install Quagga on the NGINX edge server:

• For CentOS and RHEL systems:

nginxedge# yum install quagga yum install quagga

• For Debian and Ubuntu systems:

nginxedge# apt-get install quaggaapt-get install quagga

THIS SOLUTION USES THE
BGP ROUTING SOFTWARE
FROM QUAGGA

https://docs.nginx.com/nginx/admin-guide/installing-nginx/installing-nginx-plus/
https://www.quagga.net
https://www.quagga.net

18GET ME TO THE CLUSTER 18

3 . Configure a BGP mesh that includes the NGINX edge server and all other nodes in the
Kubernetes cluster . Run the following commands to open the Quagga vtysh shell and
configure the mesh .

For each node, add a two-line neighbor definition like those shown for the kcontrol,
knode1, and knode2 nodes in the following sample command . Also make the
appropriate substitutions:

• Your AS number for 64512

• The IP address of your NGINX edge server for 172.16.1.88

• Your network subnet for 172.16.1.0/24

• The IP address of each node for 172.16.1.8x

Note: There might also be parameters for your existing iBGP network that need to be
replicated on the NGINX edge server, so remember to add them too . Consult with your
Network team .

nginxedge# vtyshvtysh
nginxedge$
configure terminal configure terminal
router bgp 64512 router bgp 64512
bgp router-id 172.16.1.88 bgp router-id 172.16.1.88 #IP addr of your NGINX edge server
network 172.16.1.0/24 network 172.16.1.0/24
neighbor calico peer-group neighbor calico peer-group
neighbor calico remote-as 64512 neighbor calico remote-as 64512
neighbor calico capability dynamic neighbor calico capability dynamic
neighbor 172.16.1.80 peer-group calico neighbor 172.16.1.80 peer-group calico
neighbor 172.16.1.80 description kcontrol neighbor 172.16.1.80 description kcontrol
neighbor 172.16.1.81 peer-group calico neighbor 172.16.1.81 peer-group calico
neighbor 172.16.1.81 description knode1 neighbor 172.16.1.81 description knode1
neighbor 172.16.1.82 peer-group calico neighbor 172.16.1.82 peer-group calico
neighbor 172.16.1.82 description knode2 neighbor 172.16.1.82 description knode2
exit exit
exit exit
writewrite

19GET ME TO THE CLUSTER 19

4 . Verify the mesh configuration is correct:

nginxedge$ show running-config show running-config
Building configuration...

Current configuration:
!
hostname nginxedge.demo.local
log file /var/log/quagga/quagga.log
hostname nginxedge
!
interface ens33
 description VMnet-172-16
 ip address 172.16.1.88/24
 ipv6 nd suppress-ra
!
interface lo
!
router bgp 64512
 bgp router-id 172.16.1.88
 network 172.16.1.0/24
 neighbor calico peer-group
 neighbor calico remote-as 64512
 neighbor calico capability dynamic
 neighbor 172.16.1.80 peer-group calico
 neighbor 172.16.1.80 description kcontrol
 neighbor 172.16.1.81 peer-group calico
 neighbor 172.16.1.81 description knode1
 neighbor 172.16.1.82 peer-group calico
 neighbor 172.16.1.82 description knode2
!
ip forwarding
!
line vty
!
end

20GET ME TO THE CLUSTER 20

5 . Verify BGP is working correctly:

nginxedge$ show ip bgp summaryshow ip bgp summary

BGP router identifier 172.16.1.88, local AS number 64512
RIB entries 1, using 112 bytes of memory
Peers 3, using 9120 bytes of memory
Peer groups 1, using 32 bytes of memory

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
172.16.1.80 4 64512 0 0 0 0 0 never Active
172.16.1.81 4 64512 0 0 0 0 0 never Active
172.16.1.82 4 64512 0 0 0 0 0 never Active

Total number of neighbors 3

21GET ME TO THE CLUSTER 21

6 . Display the detailed record for each neighbor . The sample output shows the record for
the kcontrol node .

nginxedge$ show bgp neighbors show bgp neighbors
BGP neighbor is 172.16.1.80, remote AS 64512, local AS 64512,
internal link
Description: kcontrol
 Member of peer-group calico for session parameters
 BGP version 4, remote router ID 0.0.0.0
 BGP state = Active
 Last read 00:14:05, hold time is 180, keepalive interval is
 60 seconds

 Message statistics:
 Inq depth is 0
 Outq depth is 0
 Sent Rcvd
 Opens: 0 0
 Notifications: 0 0
 Updates: 0 0
 Keepalives: 0 0
 Route Refresh: 0 0
 Capability: 0 0
 Total: 0 0
 Minimum time between advertisement runs is 5 seconds

 For address family: IPv4 Unicast
 calico peer-group member
 Community attribute sent to this neighbor(both)
 0 accepted prefixes

 Connections established 0; dropped 0
 Last reset never
Next connect timer due in 19 seconds
Read thread: off Write thread: off

7 . Exit the vtysh shell .

nginxedge$ exitexit

22GET ME TO THE CLUSTER 22

8 . On the kcontrol node, verify that the NGINX edge server is now connected to the
BGP mesh (the value in the INFO field is Established), meaning the full mesh is complete .
If not, fix the BGP mesh configuration before continuing (these configuration examples
might be helpful) .

kcontrol# calicoctl node status calicoctl node status
Calico process is running.

IPv4 BGP status
+ --------------- + ------------------- + ----- + --------- + --------------+
| PEER ADDRESS | PEER TYPE | STATE | SINCE | INFO |
+ --------------- + ------------------- + ----- + --------- + --------------+
| 172.16.1.81 | node-to-node mesh | up --| 22:56:17 | Established |
| 172.16.1.82 | node-to-node mesh | up --| 22:56:19 | Established |
| 172.16.1.88 | node-to-node mesh | up --| 22:54:55 | Established |
+ --------------- + ------------------- + ----- + --------- + --------------+

IPv6 BGP status
No IPv6 peers found.

9 . On the NGINX edge server, check the IP route table:

nginxedge# show ip routeshow ip route
Codes: K - kernel route, C - connected, S - static, R - RIP,
 O - OSPF, I - IS-IS, B - BGP, A - Babel,
 > - selected route, * - FIB route

K>* 0.0.0.0/0 via 172.16.1.2, ens33

B>* 10.1.0.0/24 [200/0] via 172.16.1.80, ens33, 00:07:03
B>* 10.1.1.0/24 [200/0] via 172.16.1.81, ens33, 00:00:58
B>* 10.1.2.0/24 [200/0] via 172.16.1.82, ens33, 00:01:58

C>* 127.0.0.0/8 is directly connected, lo
K>* 169.254.0.0/16 is directly connected, ens33
C>* 172.16.1.0/24 is directly connected, ens33

The three entries highlighted in pink are the ones you created with Quagga . Each route
entry points to the Calico pod subnet (10.1.x.0) with the IP address of a Kubernetes
node as the next hop, which means that the pods running on each node can be
reached on their respective subnets . You now have network reachability from the
NGINX edge server through the BGP mesh and the Kubernetes ClusterIP network to
the pod subnets!

10 . If you want a second NGINX edge server for high availability, repeat Steps 1 through 9
on it .

https://www.nongnu.org/quagga/docs/docs-multi/BGP-Configuration-Examples.html

23GET ME TO THE CLUSTER 23

Testing the BGP Configuration

You’re getting close now! Here comes the fun part, where you find out if all this effort was
worth it . What do you think, can the NGINX edge server talk directly to the NGINX Ingress
Controllers over BGP? Did we get you to the cluster as promised? Let’s check it out .

Next, for testing only, you update the NGINX edge server’s Linux DNS client (the host
resolver, usually found in /etc/resolv.conf) to add endpoints for the Kubernetes DNS service
(implemented as kube-dns pods), which is used to resolve cluster service names to cluster
IP addresses .

Specifically, you add svc.cluster.local and cluster.local as search domains . (These
entries are only for testing and are not needed when actually running the solution .)

Note that the Linux host’s DNS resolver is not the resolver used by NGINX Plus, which is
configured separately . The Linux DNS resolver enables testing with tools like ping, curl,
and dig .

1 . On the kcontrol node, look up the endpoint IP addresses for the kube-dns pods (in
the following sample output, they are 10.1.0.41 and 10.1.0.42):

kcontrol# kubectl describe svc kube-dns -n kube-system kubectl describe svc kube-dns -n kube-system

Name: kube-dns
Namespace: kube-system
Labels: K8s-app=kube-dns
 kubernetes.io/cluster-service=true
 kubernetes.io/name=KubeDNS
Annotations: prometheus.io/port: 9153
 prometheus.io/scrape: true
Selector: K8s-app=kube-dns
Type: ClusterIP
IP: 10.96.0.10
Port: dns 53/UDP
TargetPort: 53/UDP
Endpoints: 10.1.0.41:53,10.1.0.42:53
Port: dns-tcp 53/TCP
TargetPort: 53/TCP
Endpoints: 10.1.0.41:53,10.1.0.42:53
Port: metrics 9153/TCP
TargetPort: 9153/TCP
Endpoints: 10.1.0.41:9153,10.1.0.42:9153
Session Affinity: None
Events: <none>

DID WE GET YOU TO THE
CLUSTER AS PROMISED?

24GET ME TO THE CLUSTER 24

2 . On the NGINX edge server, update the Linux DNS resolver configuration, adding the
two search domains and a nameserver entry for each kube-dns pod . Here the changes
as they appear in /etc/resolv.conf, highlighted in pink .

nginxedge# cat /etc/resolv.conf cat /etc/resolv.conf
search localdomain demo.local cluster.local svc.cluster.local
nameserver 10.1.0.41 #kube-dns endpoint #1
nameserver 10.1.0.42 #kube-dns endpoint #2

3 . On the kcontrol node, verify that at least one NGINX Ingress Controller is running
and that the nginx-ingress-svc service you added in Deploying the NGINX Ingress
Controller Based on NGINX Plus is properly configured:

kcontrol# kubectl get pods -n nginx-ingresskubectl get pods -n nginx-ingress
 NAME READY STATUS RESTARTS AGE
 nginx-ingress-fd4b9f484-t5pb6 1/1 Running 1 12h

kcontrol# kubectl describe svc nginx-ingress-svc -n nginx-ingresskubectl describe svc nginx-ingress-svc -n nginx-ingress
Name: nginx-ingress-svc
Namespace: nginx-ingress
Labels: <none>
Annotations: Selector: app=nginx-ingress
Type: ClusterIP
IP: None
Port: http 80/TCP
TargetPort: 80/TCP
Endpoints: 10.1.0.89:80
Port: https 443/TCP
TargetPort: 443/TCP
Endpoints: 10.1.0.89:443

4 . On the NGINX edge server, make a DNS query to verify the IP address for
nginx-ingress-svc can be resolved and pinged (here, the resolved address, 10.1.0.89,
matches the NGINX Ingress Controller’s ClusterIP address .

nginxedge# ping nginx-ingress-svc.nginx-ingress.svc.cluster.local ping nginx-ingress-svc.nginx-ingress.svc.cluster.local
PING nginx-ingress-svc.nginx-ingress.svc.cluster.local (10.1.0.89)
56(84) bytes of data.
64 bytes from 10-1-0-89.nginx-ingress-svc.nginx-ingress.svc.
cluster.local (10.1.0.89): icmp_seq=1 ttl=63 time=0.293 ms
64 bytes from 10-1-0-89.nginx-ingress-svc.nginx-ingress.svc
.cluster.local (10.1.0.89): icmp_seq=2 ttl=63 time=0.952 ms

25GET ME TO THE CLUSTER 25

5 . On the kcontrol node, scale up NGINX Ingress Controller deployment to two replicas:

kcontrol# kubectl scale deployment nginx-ingress -n nginx-kubectl scale deployment nginx-ingress -n nginx-
ingress --replicas=2ingress --replicas=2

6 . Verify that there are now two endpoint IP addresses for nginx-ingress-svc:

kcontrol# kubectl describe svc nginx-ingress-svc -n nginx-ingresskubectl describe svc nginx-ingress-svc -n nginx-ingress
Name: nginx-ingress-svc
Namespace: nginx-ingress
Labels: <none>
Annotations: Selector: app=nginx-ingress
Type: ClusterIP
IP: None
Port: http 80/TCP
TargetPort: 80/TCP
Endpoints: 10.1.0.89:80,10.1.1.122:80
Port: https 443/TCP
TargetPort: 443/TCP
Endpoints: 10.1.0.89:443,10.1.1.122:443
Session Affinity: None
Events: <none>

26GET ME TO THE CLUSTER 26

7 . On the NGINX edge server, ping nginx-ingress-svc and verify that DNS returns its
two endpoints (10.1.1.122 and 10.1.0.89) in round-robin fashion .

nginxedge# ping nginx-ingress-svc.nginx-ingress.svc.cluster.localing nginx-ingress-svc.nginx-ingress.svc.cluster.local
PING nginx-ingress-svc.nginx-ingress.svc.cluster.local (10.1.1.122)
56(84) bytes of data.
64 bytes from 10-1-1-122.nginx-ingress-svc.nginx-ingress.svc.
cluster.local (10.1.1.122): icmp_seq=1 ttl=63 time=0.404 ms
64 bytes from 10-1-1-122.nginx-ingress-svc.nginx-ingress.svc.
cluster.local (10.1.1.122): icmp_seq=2 ttl=63 time=0.828 ms
64 bytes from 10-1-1-122.nginx-ingress-svc.nginx-ingress.svc.
cluster.local (10.1.1.122): icmp_seq=3 ttl=63 time=0.865 ms
^C^C
--- nginx-ingress-svc.nginx-ingress.svc.cluster.local ping
statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2004ms
rtt min/avg/max/mdev = 0.404/0.699/0.865/0.209 ms

nginxedge# ping nginx-ingress-svc.nginx-ingress.svc.cluster.localping nginx-ingress-svc.nginx-ingress.svc.cluster.local
PING nginx-ingress-svc.nginx-ingress.svc.cluster.local (10.1.0.89)
56(84) bytes of data.
64 bytes from 10-1-0-89.nginx-ingress-svc.nginx-ingress.svc.
cluster.local (10.1.0.89): icmp_seq=1 ttl=63 time=0.220 ms
64 bytes from 10-1-0-89.nginx-ingress-svc.nginx-ingress.svc.
cluster.local (10.1.0.89): icmp_seq=2 ttl=63 time=0.909 ms
64 bytes from 10-1-0-89.nginx-ingress-svc.nginx-ingress.svc.
cluster.local (10.1.0.89): icmp_seq=3 ttl=63 time=0.435 ms
^C^C
--- nginx-ingress-svc.nginx-ingress.svc.cluster.local ping
statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2004ms
rtt min/avg/max/mdev = 0.404/0.699/0.865/0.209 ms

27GET ME TO THE CLUSTER 27

Alternatively, you can run dig and verify there are two DNS A records, for 10.1.0.89
and 10.1.1.122 .

nginxedge# dig nginx-ingress-svc.nginx-ingress.svc.cluster.localdig nginx-ingress-svc.nginx-ingress.svc.cluster.local

; <<>> DiG 9.11.4-P2-RedHat-9.11.4-26.P2.el7_9.4 <<>> nginx-ingress-
svc.nginx-ingress.svc.cluster.local
...
;; QUESTION SECTION:
;nginx-ingress-svc.nginx-ingress.svc.cluster.local. IN A

;; ANSWER SECTION:
nginx-ingress-svc.nginx-ingress.svc.cluster.local. 30 IN A 10.1.0.89
nginx-ingress-svc.nginx-ingress.svc.cluster.local. 30 IN A 10.1.1.122

;; Query time: 0 msec
;; SERVER: 10.1.0.41#53(10.1.0.41)
;; WHEN: Day Mon DD HH:MM:SS TZ YYYY
;; MSG SIZE rcvd: 208

As you see, scaling the number of NGINX Ingress Controllers up and down changes the
number of endpoint IP addresses to match . Running multiple NGINX Ingress Controllers
provides production-grade high availability, and we recommend running at least three for
production workloads . (You might want to run Steps 5 through 7 again with three replicas .
Do you get three IP addresses in Steps 6 and 7?)

Configuring Layer 4 Load Balancing on the NGINX Edge Server

Now that you have Layer 3 connectivity between the NGINX edge server and NGINX
Ingress Controllers courtesy of BGP, you can configure the NGINX edge server as a Layer 4
load balancer for TCP traffic, to replace the LoadBalancer service that’s available only in
cloud deployments .

Create an NGINX configuration file like the following on the NGINX edge server, perhaps
called nginxedge.conf . (We recommend placing configuration files for the NGINX stream
context in the /etc/nginx/stream.d folder and using an include directive in the main NGINX
configuration file to reference them; for details, see Configuration Best Practices on our blog .)

YOU CAN CONFIGURE THE
NGINX EDGE SERVER AS A
LAYER 4 LOAD BALANCER
FOR TCP TRAFFIC

https://www.nginx.com/blog/tcp-load-balancing-in-nginx-plus-r5/#Configuration-Best-Practices

28GET ME TO THE CLUSTER 28

The following sample configuration for Layer 4 load balancing on the NGINX edge server
handles traffic on both port 8080 and port 8443 . These settings in the upstream configuration
blocks are key to the solution:

• The resolver directive tells NGINX which DNS servers to query, and the valid=10s
parameter specifies the frequency (here, every 10 seconds) . The status_zone parameter
collects metrics about the success or failure of these DNS queries; if you’ve configured the
NGINX Plus live activity monitoring dashboard, the metrics are displayed on the Resolvers
tab as shown below .

• The zone directive collects statistics for the TCP traffic handled by the virtual server in
this upstream block (also displayed on the TCP/UDP Upstreams tab on the NGINX Plus
dashboard as shown below, if configured) .

• The resolve parameter on the server directive tells NGINX to query DNS for the list of IP
addresses for this server’s FQDN (its Kubernetes service name) . For NGINX Ingress
Controllers, the FQDN is:

nginx-ingress-svc.nginx-ingress.svc.cluster.local

This name complies with the standard kube-dns naming format for all Kubernetes services:

service_name.namespace.svc.cluster.local

With this configuration in place, the NGINX edge server uses the NGINX Plus DNS resolution
feature . It queries kube-dns for the DNS A records of the NGINX Ingress Controllers running in
the cluster . The kube-dns service returns a list of the NGINX Ingress Controllers’ ClusterIP
addresses as allocated by Calico . The NGINX edge server can reach the kube-dns and
NGINX Ingress Controller pods directly at their IP addresses over the BGP mesh network .

THE NGINX EDGE SERVER
USES THE NGINX PLUS DNS
RESOLUTION FEATURE

https://nginx.org/en/docs/stream/ngx_stream_upstream_module.html#resolver
https://docs.nginx.com/nginx/admin-guide/monitoring/live-activity-monitoring/
https://nginx.org/en/docs/stream/ngx_stream_upstream_module.html#zone
https://nginx.org/en/docs/stream/ngx_stream_upstream_module.html#server

29GET ME TO THE CLUSTER 29

Notes:

• To use port 80 instead of 8080, you need to rename the existing default.conf file so
that NGINX Plus doesn’t read the configuration for port 80 there

• Substitute the IP addresses of your kube-dns servers for 10.1.0.41 and 10.1.0.42

NGINX edge server Layer 4 configuration file
Use kube-dns ClusterIP addresses for the NGINX Plus resolver
DNS query interval is 10 seconds

stream {
 log_format stream ‘$time_local $remote_addr - $server_addr -
$upstream_addr’;
 access_log /var/log/nginx/stream.log stream;

 # Sample configuration for TCP load balancing
 upstream nginx-ingress-80 {
 # use the kube-dns endpoint IP addresses for the
 # NGINX Plus resolver
 resolver 10.1.0.41 10.1.0.42 valid=10s status_zone=kube-dns;
 zone nginx_kic_80 256k;

 server nginx-ingress-svc.nginx-ingress.svc.cluster.local:
80 resolve;
 }

 upstream nginx-ingress-443 {
 # use the kube-dns endpoint IP addresses for the
 # NGINX Plus resolver
 resolver 10.1.0.41 10.1.0.42 valid=10s status_zone=kube-dns;
 zone nginx_kic_443 256k;
 server nginx-ingress-svc.nginx-ingress.svc.cluster.local:
443 resolve;
 }

 server {
 listen 8080;
 status_zone tcp_server_8080;
 proxy_pass nginx-ingress-80;
 }

 server {
 listen 8443;
 status_zone tcp_server_8443;
 proxy_pass nginx-ingress-443;
 }
}

30GET ME TO THE CLUSTER 30

The Resolvers tab on the live activity monitoring dashboard shows that all DNS queries
have been successful:

The TCP/UDP Upstreams tab shows upstream servers for HTTP and HTTPS like those
configured on page 29:

S U M M A RY A N D N E X T S T E P S

You’ve deployed a solution for dynamically resolving the IP addresses of NGINX Ingress
Controllers in an on-premises Kubernetes cluster, using the Kubernetes DNS service
and BGP .

You deployed, configured, and tested the four components of this solution:

• An iBGP network in the data center

• Kubernetes cluster with Calico CNI and BGP

• NGINX Ingress Controller based on NGINX Plus

• NGINX Plus edge server, configured for BGP with Quagga and for Layer 4 load balancing

As a next step, deploy some application pods and configure NGINX Ingress Controller to
route traffic to those pods and see what happens . If you don’t have a test app, we suggest
the “complete example” at our GitHub repo (which also has many other examples for
specific use cases) .

We hope this whitepaper helps you tackle the challenge of providing user access to your
Kubernetes apps running on premises . We trust the Networking and App Dev teams at your
organization can collaborate on a solution like this so you can sprint through milestones
along your modern application journey .

©2022 F5, Inc . All rights reserved . F5, the F5 logo, NGINX, the NGINX logo, F5 NGINX, F5 NGINX Ingress Controller, and F5 NGINX Plus,
are trademarks of F5 in the U .S . and in certain other countries . Other F5 trademarks are identified at f5 .com . Any other products, services, or
company names referenced herein may be trademarks of their respective owners with no endorsement or affiliation, expressed or implied,
claimed by F5 .

https://www.nginx.com
https://github.com/nginxinc/kubernetes-ingress/tree/main/examples/complete-example
http://f5.com

	Summary and Next Steps
	The Challenge: Enabling External Access to Kubernetes Services
	A Solution Combining Kubernetes Ingress,
NGINX, and BGP
	The iBGP Network
	Project Calico CNI Networking
	NGINX Ingress Controller Based on NGINX Plus
	NGINX Plus as a Reverse Proxy at the Edge
	Deploying the Solution
	Configuring the iBGP Network
	Installing and Configuring a Kubernetes Cluster with Calico
	Configuring Calico IP Pools
	Configuring iBGP Peering on the Kubernetes Nodes
	Deploying the NGINX Ingress Controller Based on NGINX Plus
	Configuring the NGINX Plus Edge Server

	Installing NGINX Plus
	Installing Quagga and Configuring BGP
	Testing the BGP Configuration
	Configuring Layer 4 Load Balancing on the NGINX Edge Server

