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Executive Summary
Designing and deploying AI applications at scale entails addressing intricate challenges 
to strike a careful balance between power availability and cost, latency requirements, 
data gravity, and system reliability. This document employs foundational concepts such as 
"power gravity" and "data gravity" to elucidate the driving forces behind AI infrastructure 
design. It discusses the trade-offs and synergies between these factors. Furthermore, it 
examines various deployment models—SaaS-hosted, cloud-hosted, self-hosted, and edge-
hosted—highlighting their distinctive challenges and providing insights into achieving optimal 
performance, scalability, and sustainability for organizations.

Advanced strategies such as model optimization, federated learning, and hybrid approaches 
are examined to address various business and technical requirements of AI workloads. 
Regulatory compliance and environmental considerations in designing sustainable AI 
solutions are discussed. By presenting case studies and exploring future trends like nuclear 
energy and emerging technologies, this document aims to provide a guide for organizations 
targeting efficient and scalable AI applications. It highlights the need for informed design 
decisions that align with technological advancements and business objectives, ensuring AI 
infrastructure can adapt to changing market demands.
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Introduction
The development and operation of AI applications at scale present unique challenges, 
particularly when it comes to balancing the often-competing needs for affordable and 
reliable power with service-level agreements (SLAs), and—in today’s world of AI apps—the 
geographic constraints on GPU and data locations. AI factories (massive storage, networking, 
and computing investments serving high-volume, high-performance training and inference 
requirements) being designed and deployed today have immense power needs. In fact, the 
term “power gravity” has recently been coined to refer to the need to locate computational 
resources where power is abundant and cost effective. These power considerations can be at 
odds with SLA requirements, especially when there are tight latency constraints, such as for 
applications that require real-time inferencing, like augmented reality, autonomous vehicles, 
and smart manufacturing. 

A third critical factor arises if there are large data sets needed by the application. Data owners 
use the term “data gravity” to refer to the bias for large data corpora to attract applications 
and services to where the data is generated or resides. Yet another input in this mix of design 
considerations comes from the reliability requirements for mission-critical applications. This 
white paper explores the relationship between these different forces and provides insights 
into how organizations can navigate these challenges, identifying areas of synergy and areas 
where trade-offs must be made.
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Fundamental Application Architecture 
Challenges
Designing and deploying AI applications at scale involves navigating a complex landscape of 
architectural challenges. These challenges stem from the need to balance goals in the areas 
of cost and availability of power, latency requirements of the application, and overall system 
reliability while managing the business and regulatory constraints imposed by the locality of 
data and compute/GPU resources. While these challenges are true for applications generally, 
the recent emergence of AI applications—which are often more power and data intensive 
while simultaneously becoming increasingly mission critical across many industries—makes 
understanding and addressing these fundamental architecture challenges crucial for ensuring 
optimal performance, scalability, and sustainability.

Latency

The end-to-end latency experienced by an application's client is primarily determined by the 
application's problem domain and business objectives. While most applications typically set 
a target latency goal, the prescribed value can be as tight as tens of milliseconds or could 
be as long as a couple of seconds. Highly interactive multimedia applications, such as real-
time language translation, augmented reality, or connected autonomous vehicles, typically 
require the lowest latency values. Clients of interactive consumer applications that are more 
transactional, such as e-commerce or banking, tend to be latency tolerant, though less so on 
mobile devices.1 Finally, large, automated workflows, such as backup and database analytics, 
tend to be viewed more as “batch” jobs, with latency being less of a concern (compared to 
factors like cost efficiency.)

Figure 1: Balancing architecture challenges
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In addition to considering the metric of average latency, some applications also have 
requirements on the “worst-case” (for example, 99th slowest percentile) latency or the 
variability in latency (also known as “jitter”) that an application client observes. Citing the 
aforementioned examples, the consequence of an unfortunate delay would vary widely—a 
one-second slower translation 1% of the time might be mildly annoying, but a one-second 
delay in returning information about a neighboring car on a smart highway could have 
life-threatening consequences (or, in a more fault-tolerant design, an anxiety-inducing user 
experience from the vehicle making an emergency maneuver). 

Other applications—notably augmented reality and some online games—can be more tolerant 
of modest latency, but only if that latency is consistent. For those applications, the “jitter” can 
cause more user experience issues than a few extra tens of milliseconds (ms) of latency. In 
fact, one study found that for modest latency (below 150 ms), each 10 ms increase in jitter 
resulted in twice the quit rate than a 10 ms increase in average latency.2 

In the context of generative AI (GenAI) applications, training generally is viewed as a “batch” 
job and therefore tolerates latency. In contrast, inferencing is used in more interactive 
workflows and will usually have latency requirements in the tens to hundreds of milliseconds, 
depending on the modality of the interaction (text vs. video response, for example), with 
worst-case and jitter requirements being dependent on the application, such as autonomous 
driving compared to real-time audio translation.

Understanding an application's latency requirements—average, worst case, and jitter—is 
crucial for deployment decisions. It's a good starting point as these requirements are usually 
independent of power and data gravity concerns.

Figure 2: Latency optimization
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Power

The rapid expansion of AI applications has led to significant power challenges that directly 
impact application architecture and delivery. Power availability is a primary concern, as AI data 
centers require substantial and reliable electricity to support high-performance computing 
tasks. For instance, data centers can consume as much power as a mid-sized city based in the 
United States, with projections indicating that demand will triple within three years, consuming 
12% of the country's power supply.3 This escalating demand necessitates careful planning to 
ensure uninterrupted power supply, as any instability can lead to application downtime and 
degraded performance.

The cost of power is another critical factor influencing AI infrastructure decisions. The energy-
intensive nature of AI workloads leads to substantial operational expenses. For example, 
the increasing energy consumption of GenAI poses significant environmental concerns. AI 
data centers require immense processing power, leading companies to explore sustainable 
solutions to mitigate costs.4 Consequently, organizations are exploring more efficient energy 
management strategies to optimize power usage and reduce expenses.

Addressing the environmental impact of increased power consumption is also paramount. 
The surge in energy demand from AI data centers contributes to higher carbon emissions 
and resource depletion, conflicting with global sustainability goals. For instance, AI workloads 
have sent data center emissions skyrocketing, prompting experts to explore ways to reduce 
energy use and promote sustainable AI.5 Organizations are now prioritizing the integration of 
renewable energy sources and implementing energy-efficient technologies to minimize their 
ecological footprint.

Finally, navigating regulatory compliance related to power consumption and environmental 
impact is becoming increasingly complex. Governments and regulatory bodies are imposing 
stricter guidelines to ensure sustainable energy practices. For example, in Virginia, the rapid 
expansion of data centers has raised concerns about overburdening the electrical grid, 
leading to discussions on regulatory measures to manage this growth.6 Organizations must 
adapt their application architectures to align with these evolving regulations, ensuring that 
their operations remain compliant while meeting performance and scalability requirements.

Figure 3: Balancing power and performance
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Reliability

The growing importance of AI applications has intensified the need for highly reliable 
infrastructure and architecture. AI systems are increasingly embedded in mission-critical 
business processes—from financial forecasting and fraud detection to clinical decision 
support and industrial automation. As organizations scale AI adoption, they are also placing 
these systems under business-driven SLAs that demand consistent uptime, performance, 
and correctness. Reliability—defined as the ability of a system to function correctly and 
consistently over time—is no longer just an operational ideal; it is a contractual requirement. 
Failure to meet reliability expectations can result in missed SLAs, financial penalties, 
reputational damage, and, in some cases, regulatory exposure.

The complexity of modern AI systems compounds this challenge. High-performance AI 
applications often span distributed clusters, GPU-intensive inference pipelines, real-time 
data streams, and hybrid deployments across cloud, edge, and on-premises environments. 
Each of these components represents a potential point of failure. A lapse in data freshness, 
a stalled inference engine, or a failed component in the orchestration layer can all degrade 
service reliability, leading to downstream impacts on users or automated systems that 
depend on the AI output. In systems under tight SLAs, even brief disruptions can cascade into 
significant business consequences. For example, if a recommendation engine fails during a 
high-traffic sales event, the loss of customer engagement and revenue can be immediate and 
measurable.

What makes reliability a particularly acute problem in AI is that failure modes are often non-
obvious and data dependent. Unlike traditional applications, AI systems can produce subtly 
incorrect results—hallucinated outputs, misclassifications, or biased inferences—without 
crashing or logging errors. These “silent failures” can go undetected, quietly eroding user 
trust or introducing systemic risk, especially in high-stakes environments like healthcare, 
finance, or security. These characteristics challenge traditional monitoring strategies and 
elevate the risk profile of AI systems. Without strong reliability engineering practices and 
visibility into model behavior, organizations risk deploying systems that behave unpredictably 
in real-world conditions.7

Finally, as AI systems take on more decision-making responsibility, the consequences of 
unreliability become increasingly existential to the business. Unreliable AI can undermine 
automation initiatives, expose gaps in compliance, or cause downstream systems to behave 
incorrectly. This has led many organizations to adopt human-in-the-loop practices as a short-
term safety measure. While effective for reducing the impact of AI misbehavior, this introduces 
manual effort that undermines the efficiency gains AI is meant to deliver. Over time, failure to 
address reliability at the architectural level leads to brittle systems that are costly to operate, 
difficult to scale, and ultimately unfit for business-critical use cases.8
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In conclusion, navigating the challenges of AI infrastructure design requires a delicate balance 
between power, latency, reliability, and data requirements. As AI applications continue to 
evolve and become more integral to various industries, it is crucial to address these factors 
to ensure optimal performance and scalability. By understanding the unique demands of AI 
workloads and leveraging strategies such as model optimization, federated learning, and 
hybrid approaches, organizations can build efficient and scalable AI applications. Additionally, 
considering the regulatory and environmental impacts of power consumption and data 
governance will be essential in creating sustainable and compliant AI solutions. Ultimately, the 
key to success lies in making informed decisions that align with both business objectives and 
technological advancements.

Understanding the Effects of Application 
Deployment Model Choices
Power, latency, and reliability challenges vary significantly depending on where an AI solution 
is deployed. F5's AI Reference Architecture9 includes four deployment models: SaaS-hosted, 
cloud-hosted, self-hosted, and edge-hosted. Each model presents unique challenges and 
strategies for balancing power gravity and data gravity. Understanding these challenges is 
crucial for designing and deploying AI applications that meet performance, scalability, and 
sustainability requirements.

SaaS AI

The AI solution is provided as a fully managed service by a third-party provider. 
Customers can access and use the AI capabilities over the internet without 
worrying about the underlying infrastructure, maintenance, or updates, making it a 
convenient and scalable option.

•	 Examples: Microsoft CoPilot, Salesforce Einstein, Microsoft Azure OpenAI 
Service w/ GPT 4o, Meta Llama 3.2 in Amazon Bedrock 

Cloud-Hosted AI

The AI solution runs on cloud infrastructure provided by cloud service providers 
such as AWS, Google Cloud, or Azure. It offers flexibility, scalability, and ease of 
integration with other cloud services, while the customer maintains control over 
the configuration and management of their AI systems.

•	 Examples: vLLM running Llama 3.2 on AWS infrastructure 
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SaaS

In a SaaS-hosted deployment model, the AI solution is provided as a fully managed service 
by a third-party provider. AI application owners can access and use the AI capabilities over 
the Internet without needing to worry about the underlying infrastructure, maintenance, 
or updates. This relief for the application owner comes with trade-offs. First, the total cost 
may be significantly higher, especially at a large scale, similar to what has been observed 
in the past for large public cloud deployments. Second, the set of capabilities and SLA 
parameters are set by the SaaS provider, implying that specific AI architecture patterns may 
not be possible (for example, fine-tuning, distilled models) and that there may be mismatches 
between the application’s SLA needs and the provider’s capabilities.

P OW E R ,  L AT E N CY,  A N D  R E L I A B I L I T Y  C O N S I D E R AT I O N S

Power:

•	 Limited control over power efficiency improvements 

Latency:

•	 Network latency due to data traveling to and from the cloud

•	 Potential performance issues during peak usage times

•	 Varied latency depending on the user's geographic location

Self-Hosted AI

The AI solution is deployed on the customer's own infrastructure, such as on-
premises servers or private data centers. This provides maximum control and 
customization options but requires significant resources for setup, maintenance, 
and management of the hardware and software components.

•	 Examples: NVIDIA Triton Inference Server running Llama 3.2 on bare metal 
on-premises 

Edge-Hosted AI

The AI solution in an edge environment, outside traditional cloud or data center 
infrastructure. This model reduces latency, enhances privacy, and ensures real-
time processing by bringing the computation closer to the data source or end-user.

•	 Example: Tesla Full-Self Driving, John Deere See & Spray, industrial IoT solutions

Figure 4: Four AI deployment models
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Reliability:

•	 Dependency on the service provider's uptime and maintenance schedules

•	 Risk of outages affecting multiple users simultaneously

•	 Limited control over disaster recovery protocols 

Cloud-hosted

In a cloud-hosted deployment model, the AI solution runs on cloud infrastructure (compute, 
networking, object storage, AI-specialized compute, AI model repository, vector database, 
etc.) from cloud service providers such as AWS, Google Cloud, or Microsoft Azure. This 
deployment model offers flexibility in choosing, configuring, and operating large language 
models (LLMs). Benefits include scalability, ease of integration with other cloud services, and 
the ability to select the most suitable language model for specific tasks. 

Unlike SaaS, the application owners have much more control over both how the application 
is architected and where/how it is deployed, only limited by the building blocks provided 
by the cloud provider(s) and their set of deployment choices. However, it also presents 
challenges, such as managing data transfer costs, ensuring latency is minimized, especially 
if data is distributed across multiple cloud regions, and maintaining optimal performance 
configurations. Additionally, operating a custom LLM environment demands costly specialized 
skills, including expertise in machine learning, data engineering, and cloud architecture, to 
effectively manage and optimize the system.

P OW E R ,  L AT E N CY,  A N D  R E L I A B I L I T Y  C O N S I D E R AT I O N S

Power:

•	 Power is controlled by the cloud service provider 

Latency:

•	 Network latency based on the distance between the user and data center

•	 Impact of bandwidth limitations and network congestion

•	 Variability in latency depending on cloud provider's infrastructure 

Reliability:

•	 Reliability depends on the cloud provider's infrastructure and SLAs

•	 Risk of widespread outages affecting all hosted services.

•	 Robustness of the cloud provider's disaster recovery and backup solutions
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Self-hosted

In a self-hosted deployment model, the AI solution is deployed on the customer's own 
infrastructure, such as on-premises servers or collocated data centers. This model allows for 
high control and significant customization but requires considerable up-front capital resources 
for setup, maintenance, and management of the hardware and software components. These 
considerable resources include skilled personnel who can handle complex configurations and 
ongoing technical support, specialized hardware that can efficiently process AI workloads, 
and substantial financial resources to cover the costs of purchasing and maintaining this 
equipment. In addition, the customer must ensure adequate power availability and manage 
the environmental impact of increased power consumption. Where there are critical latency 
requirements specified by the AI application owner and/or limitations to the ability of local 
municipalities to deliver on the power demands of the AI data center, it may be required to set 
up multiple data centers in different locations, each of which must manage their power and 
environmental impacts.

P OW E R ,  L AT E N CY,  A N D  R E L I A B I L I T Y  C O N S I D E R AT I O N S

Power:

•	 Customer responsibility for managing and optimizing power usage

•	 Need for backup power solutions (such as generators)

•	 Energy consumption depends on the scale and efficiency of the local infrastructure 

Latency:

•	 Generally lower latency as data processing is closer to the source

•	 Network latency minimized by local infrastructure

•	 Latency variability dependent on local network configuration 

Reliability:

•	 Reliability depends on the quality of the local infrastructure

•	 Customer responsibility for maintaining uptime and handling outages

•	 Need for robust backup and disaster recovery solutions
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Edge-hosted

A primary challenge in edge ecosystems is ensuring power availability and reliability, as 
edge devices often operate in environments with limited power supply. Efficient power 
management is crucial for continuous operation, requiring optimized AI models capable of 
running on low-power hardware.

Backhaul reliability is a crucial factor for maintaining stable data transmission to central 
servers or cloud infrastructures for processing. In scenarios where real-time decision-making 
is essential, such as with autonomous vehicles or industrial automation, any disruption 
in backhaul connectivity can lead to substantial delays or operational failures. Therefore, 
solution design must account for potential non-trivial connectivity interruptions. Real-time 
decision-making defines edge computing, providing immediate insights and actions essential 
for applications like smart healthcare or retail, where milliseconds matter. Edge devices 
must manage event data streams and perform complex computations with minimal latency. 
Balancing power and data gravity presents unique challenges, demanding power-efficient AI 
models and robust backhaul connections.

P OW E R ,  L AT E N CY,  A N D  R E L I A B I L I T Y  C O N S I D E R AT I O N S

Power:

•	 Limited power availability in some edge devices and locations

•	 Energy efficiency is crucial due to constrained power resources

•	 Potential need for battery solutions or renewable energy sources 

Latency:

•	 Lower latency due to proximity to data sources to support real-time applications and 
services

•	 Minimized data transfer times and network congestion 

Reliability:

•	 Reliability can vary based on the robustness of edge devices

•	 Potential challenges with maintaining and updating distributed edge infrastructure

•	 Dependency on local network conditions and connectivity
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An Application Priority Choice: Data-Centric 
vs. Compute-Centric
Armed with an understanding of deployment models and their unique considerations, we 
now turn to how an application owner or a DevOps engineer can approach making the 
deployment decision for specific applications. We distinguish between existing applications 
and newly proposed or developing applications, as the latter will often have additional design 
options that are not possible for existing applications.

General Design Considerations

Some general properties are broadly true for most applications and deployment models, 
so they can be considered as ground rules. The first is that governance factors, especially 
compliance and business continuity, are often non-negotiable and are likely to be very 
difficult to impossible to design around, thereby making them forcing functions. The most 
common regulatory driver is data management. Specifically, data sovereignty requirements 
may entirely preclude some application deployment locations or models. Similarly, hard 
requirements around disaster recovery will usually necessitate some form of redundant 
deployment model. Lastly, from the perspective of all else being equal, it is important to 
remember that, because of economies of scale, large monolithic data centers that co-locate 
big compute, CPU, and storage will be more efficient than smaller ones. Of course, all else is 
rarely equal, which is the focus of the remainder of this section.

Existing Application Deployment 

Start with latency 
Millions of applications currently exist with varied user bases and reliability requirements that 
may not have been considered when the application was first designed. For these existing 
applications, latency becomes a third non-negotiable constraint, alongside compliance and 
business continuity. Latency is an important factor in deployment decisions as it is a function 
of the application’s business needs, independent of power gravity. The application’s latency 
requirements, if present and aggressive (as described earlier, highly dependent on the 
application’s domain), are suited to deployment models that optimize network transit—edge-
hosted or SaaS services that are distributed and can be directly accessed by the client. 
When control over worst-case latency and jitter is needed, self-hosted deployment may be a 
better option due to allowing direct management of the network stack. Similarly, applications 
with specific data requirements that are sensitive to latency will benefit from collocating 
data and compute resources to minimize data transfer delays, which often makes SaaS 
deployment impractical.

From the lens of GenAI applications, aggressive latency requirements will be more common 
for inferencing, especially when the output is real-time multimedia, such as real-time audio 
language translation. AI training workflows don’t have the same needs, as these long-running 
activities can tolerate latency.



Navigating the Challenges of AI Infrastructure Design: Balancing Power, Latency, Reliability, and Data Requirements 15

For existing applications that have aggressive latency requirements, edge-hosted 
deployments are usually the best fit, though this may require data to be moved to or 
(more likely) cached at the edge. Where that is not possible, applications with slightly less 
aggressive latency goals and/or those with significant overlap between self-hosted locations 
and the application customer base can use self-hosted deployment. This model can also 
be used to relieve possible data constraints. While less ideal, SaaS services that employ a 
distributed edge architecture can be used if worst-case latency and jitter are not primary 
concerns and the application client device can directly invoke the SaaS service without 
requiring a data center module to mediate the interaction.

Then think of data needs 
After latency, the next decision is the trade-off between power gravity and data gravity. While 
both these factors are intertwined, and the trade-offs can be iterated upon, we recommend 
starting with data, as it more often has hard compliance constraints around privacy and 
sovereignty, whereas power constraints tend to mostly limit upside scalability, for which there 
are additional architectural options.

The hard data constraints will typically force more black-and-white decisions on deployment. 
For example, if regulatory requirements mandate that some data be kept within a specific 
geography, that is likely to force a decision to go with a distributed deployment model with 
nodes in each regulated geography or to forego other geographic markets entirely. On the 
other hand, the overhead of building data centers that require complex certifications (such as 
FedRAMP) may strongly bias business leaders towards fewer, larger data centers.

Another important consideration is the adjustable operational expense (OpEx) of data 
movement required by the application—specifically, how much data must be available 
wherever the application runs. The data requirements vary by application type:

•	 For chatbot applications, the primary data often comes directly from the client request1 

•	 For geo-specific services like food delivery or ride sharing, most required data is 
naturally location-based and doesn't need high-speed transfer

•	 For applications like weather forecasts, the necessary data may be relatively small or 
easily cacheable

 
While some applications do require access to large volumes of non-cacheable data, in most 
cases the cost and latency of data movement are minor compared to compute costs. For 
example, the costs of moving data for a chatbot leveraging retrieval-augmented generation 
(RAG) backed by a large document store are still likely lower than the cost of the GPU running 
an LLM.

1 �It is important to note the AI models are also an avenue of data, but in most cases the models are fairly static, relatively modest in size, and easily 
cacheable; therefore, the cost of pushing the model to multiple locations (such as an edge-hosted environment) is relatively minimal. 
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Depending on the application, the deployment biases arising from the data requirements may 
align or be at odds with the latency-driven decisions. Where they align—such edge computing 
bias as for geographically-based applications (such as ridesharing)—the decisions are easy. 
Similarly, if the application does not have strong latency requirements, then the data-driven 
deployment decisions will not cause conflict. Only those applications that have both strong 
latency requirements and large monolithic data create tension. Fortunately, such applications 
are uncommon, and when they do occur, the usual trade-off is to focus first on meeting the 
latency constraints and then accepting additional OpEx costs associated with data motion.

Power decisions impact OpEx and scale limits 
The third primary dimension of application deployment trade-offs is power, including:

•	 The cost of each client request

•	 Power efficiency of the application as measured by watts per client request

•	 The maximum number of concurrent users that the application can support based on 
maximum available power and efficiency 

For data centers that are not self-hosted (such as hyperscaler cloud providers and SaaS 
providers), the monetary cost of power is implicitly included in the cost of the exposed 
resource, including CPU, disk, memory, or GPU. 

For applications that are especially power intensive per client (typically either large database 
apps or ML/GenAI heavy apps), the cost of power can be an important factor in the overall 
OpEx of the application. For power-intensive apps that do not require decentralization (such 
as apps that are latency tolerant), the preferred option is to deploy those apps in large data 
centers where power is inexpensive. However, if latency and/or data locality needs drive 
decentralization, those needs should take precedence. Given the choice, the distributed 
nodes should still take advantage of the lowest available priced (reliable) power within the 
required geographic region.

In addition to the cost, the maximum available power can be a consideration. This is usually 
not an issue until one of two things occurs. First, if an application has a huge user base or 
becomes especially power intensive (such as GenAI model training), it can outgrow the local 
utility’s customer quota or even ability to supply reliably. Alternately, a data center may be 
serving many smaller apps that in aggregate exceed the power supplier’s quota or capacity. 
The solution to the first set of issues is to find a way to globally load balance across multiple 
data centers. This occurs naturally for edge-deployed apps. Techniques such as DNS load 
balancing can be used when the application deployment is not already distributed. 

The second issue—power limitations arising from an excessive portfolio of applications—can 
be addressed by deploying to a small number of data centers, each built at a location with 
relatively inexpensive power. This is the strategy used by today’s largest cloud providers.
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The final consideration is the reliability of power. Most large data centers have backup power 
for short-duration outages, but if outages become common (such as rotating blackouts) or the 
area is prone to natural disasters that could result in long outages, an N-1 or N-2 redundancy 
strategy should be employed. Sufficient excess aggregate power capacity should be available 
across all data centers so that the loss of any one (or perhaps two) can be shouldered by the 
remaining data centers.

In short, power capacity concerns can often be addressed by distributing the workload across 
multiple processing locations using DNS on a per-application basis. This approach often 
aligns with the need to distribute workloads for other reasons like latency or data geo-locality. 
The primary exception is for non-latency-sensitive but power-intensive applications that also 
require data to be centralized. This trifecta of conditions is fortunately rare, with the most 
common case being AI training. In such cases, performing the work in a single large data 
center, with cheap abundant power, is the recommended strategy, offloading as many other 
applications as needed to ensure the power-hungry application’s needs are met. When even 
that is insufficient, application refactoring may need to be the last resort.

New Application Development 

The development of new applications has more options to optimize the trade-offs between 
latency needs, data constraints, scalability goals, and the availability of reliable, inexpensive, 
and abundant power. While many of these trade-offs were discussed earlier relative to 
existing applications, here they are summarized with a focus on their application in the design 
process. We will also present how these ideas can be specifically executed within the context 
of GenAI application development.

Latency 
When developing new applications, consider which business requirements demand low 
latency (or minimal jitter) and whether your architecture can separate these components into 
distinct microservices or applications that clients can access independently.

For example, many multimedia applications have a “control plane” that establishes 
connections and authenticates and authorizes the user and a “data plane” that delivers 
the media content. The control plane has relaxed latency constraints and thus more 
freedom in deployment location, even if the data plane will have latency-driven deployment 
considerations. The nuance around direct client access is mentioned because it enables 
latency-sensitive services to be decoupled from the latency-tolerant ones from the user’s 
perspective.

In addition, if much of the data required to deliver responses with low latency is infrequently 
updated, or if the application allows update to that data to be updated in a more relaxed 
manner, then caching the data can solve a potentially difficult trade-off between centralized 
deployment (for data reasons) and distributed deployment (for latency). Consider traffic 
monitoring for a navigation application. Traffic information for remote locations is latency 
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tolerant, while only the data for the local location is latency sensitive. In that case, the 
distributed application architecture can cache information for remote application nodes and 
allow that cache to be lazily updated.

Data 
Using the same strategy as for latency, new application development should start by 
identifying any hard requirements (such as regulatory and compliance10) for data locality. If the 
exercise uncovers a limited number of localities that have such constraints, then the business 
owner should consider if those specific locations are of sufficient importance to drive 
deployment location decisions. 

Assuming the hard data constraints are met, and that latency requirements do not force a 
distributed deployment model where data and compute must be co-located, then the primary 
data consideration is understanding the cost of transporting the data to compute resources, if 
the two are not co-located. This computation primarily depends on:

•	 The amount of data that must be shipped for each request or unit of compute

•	 The cost of moving each byte of data (with acceptable data transfer latency) 
 
Taking a consumer energy monitoring application as an example, if there are 1 million 
monitored households, each sending 10KB of data per hour at $0.10 per GB, the data 
transmission cost would be $1.00 per hour. This cost is relevant for business owners who 
must make trade-offs around data transmission costs versus power costs.

Power 
Primary power considerations are the cost per unit, reliability, and abundance/ability to 
scale. Assuming DevOps teams follow a practice of distributing applications to different data 
centers to keep each data center within its capacity, the main scalability concern of any single 
application is whether it is intended to scale past the capacity of a single data center. If this is 
a requirement for a new application, that application should be architected so that load can 
be distributed to multiple data centers, perhaps leveraging a DNS-based load balancing and 
routing technology. In the rare case of an application that has high upside scalability needs 
but cannot be deployed across multiple data centers, then the design should be examined to 
see if the power required per request or per client can be reduced.

The reliability needs of the application should be evaluated against the reliability capabilities 
of the deployment locations. When these locations cannot meet reliability requirements, the 
application design should incorporate load distribution methods—similar to those used for 
scalability—to enhance overall system reliability.

Finally, minimizing the OpEx of the application means minimizing the sum of the power 
costs (for compute and data) and any data motion costs. New applications will typically have 
freedom regarding where the necessary compute resources, such as virtual CPUs, GPUs, and 
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Kubernetes clusters, are located. Application owners will typically choose the location that 
has the lowest power cost as long as reliability and maximum power requirements are met. 

In the case of legacy data, it should be co-located if possible to eliminate data motion costs. 
When the home of the data cannot be moved, the OpEx owner should compute the marginal 
increased cost of power of moving the compute to the location of the data, versus the cost of 
transmitting the data to the low power cost deployment location. 

Going back to the energy monitoring example, where the data transmission costs were $1.00 
per hour, let’s assume that the difference in power cost is $0.02 per hour (between the low-
cost power location and the location that is the data “home”). Then, if the power used for 
computation is over 50W/hour, moving the data to the low-cost compute data center is more 
cost effective than running compute resources in the same data center as the data.

In the Context of GenAI Applications

The recent explosion of applications leveraging GenAI technologies, and specifically the data 
considerations and power attributes of specialized AI processors has made the trade-offs 
mentioned especially relevant. Therefore, we provide some specific guidance in the context 
of developing of new GenAI applications.

The distinction between training workflows and inferencing workflows is a key one. 
Inferencing (the classification of an input or the creation of new content) is typically less 
compute-intensive than training, which involves the creation of a new model, either from 
scratch or derived from a prior model.

Inferencing 
Inferencing applications typically create a response, whether text, audio, image, or video, 
based on a user request. The limitations of most of today’s AI inferencing hardware often 
preclude latencies of under 100 milliseconds, but it is expected that this number will improve 
significantly over the next 12-24 months. Therefore, while current hardware disallows 
achieving latencies for which deployment location matters, we believe this will change 
quickly. Consequently, understanding the business needs for newly developed AI apps will be 
increasingly important in the next one to two years. Latency-sensitive AI applications will likely 
emerge in real-time language translation or autonomous navigation.

Two relevant emerging GenAI technologies are worth noting for latency, data, power. First, 
is RAG technology to improve AI response quality, augmenting the prompt with additional 
contextual data judiciously selected from a specialized data corpus. When RAG data is remote 
(such as a Microsoft SharePoint document store in the cloud), obtaining that data to enhance 
the prompt can incur additional latency. Some latency-intolerant apps may need to forego RAG 
in favor of alternate techniques, such as specialized or fine-tuned models (described later). 

Second, if the size of the RAG data is large, the additional data transmission cost may become 
relevant. However, because the point of RAG is to choose the additional data judiciously, we 
expect the additional cost to typically be manageable.
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Also relevant is the use of more specialized models. Several technical approaches exist, but 
the most relevant for inferencing deployment decisions is model distillation, which creates 
a relatively small (compared to a general-purpose LLM) model that embodies only the 
knowledge needed for the application’s problem domain. If done well, this smaller model 
can be used to reduce both latency and power—smaller models typically have lower latency 
and consume less power. Therefore, new GenAI applications that address only a limited 
knowledge domain should consider specialized models, especially distilled models if latency 
or power are primary concerns for those applications.

Training 
The creation of a new model tends to be much more compute and data intensive than tuning, 
typically taking days or weeks. As a result, training is almost always latency tolerant without 
deployment location constraints for compute. However, training typically ingests very large 
amounts of data—OpenAI GPT-4 is believed to be trained on over 60TB of data.11 With multiple 
iterations of that data used in a single training run, it is highly desirable to have the data 
present in the same location as the training compute hardware for the entire training duration. 

Another benefit of placing training data near training hardware is improved efficiency, as 
GPUs perform better when they can access data with minimal latency. Note that if the training 
data does not change throughout the process (true in most cases), the cost of making a 
one-time copy of the data to the training compute location is likely to be relatively small. For 
example, the cost of transferring a training set of 60TB, at a transmission cost of $0.10 per GB 
is $6,000.00, which is usually less than 0.1% of the compute cost of training. 

In short, for most GenAI training use cases, a centralized deployment model is the best 
choice, as it then co-locates data with compute in a location that can provide inexpensive 
power in sufficient quantities. If multiple models are to be trained, they can usually be treated 
as independent, so each training event can be assigned to a different data center if needed 
because of power availability issues. The primary exception is for scenarios where the training 
data has hard data residency requirements, in which case either the compute location must 
be chosen to honor those constraints, or the data must be handled separately using other 
training augmentation techniques.

Fine-tuning is an important GenAI technique for creating specialized models that better align 
with application objectives than their generic base models. Unlike other methods, fine-tuning 
achieves this alignment without adding runtime costs during inference. Training data for fine-
tuning may contain sensitive data with location limitations,2 dictating the location of where 
fine-tuning can occur.

Model optimization 
AI model optimization addresses the tension between power gravity and data gravity to 
reduce computational and power requirements. This can involve techniques such as purpose-
built models, model pruning, quantization, and federated learning.

2 In the case of the fine-tuning corpus, the data constraint may be either regulatory or data sensitive due to the intellectual property value of the training set. 
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Federated learning 
This technique allows AI model training to be partitioned across multiple decentralized devices 
or servers, reducing the need to centralize data and computational resources. It can help 
manage the peak demands of power and data gravity by distributing the computational load.

Hybrid approaches 
Organizations can adopt hybrid approaches that combine centralized and decentralized 
strategies. For example, training large models in centralized data centers where power is 
abundant, while deploying optimized models to the edge for inference.

Optimizing data transfer and storage 
Reducing data transfer and storage needs through techniques such as data compression and 
deduplication helps minimize power consumption.

 

New Data Center Investment 

Locating data centers near abundant, reliable, and cost-effective power 
Strategic placement of data centers in regions with access to cheap and reliable power 
sources helps reduce operational costs and ensure a stable power supply.

Investing in renewable energy sources 
Utilizing renewable energy sources such as solar, wind, and hydroelectric power ensures a 
sustainable power supply and reduces the carbon footprint of data centers.

Implementing energy-efficient technologies 
Employing energy-efficient hardware and cooling technologies can significantly reduce power 
consumption.
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Case Studies
AI Factories

The rapid expansion of AI-driven workloads has dramatically increased the demand for high-
performance data centers, making power availability a critical constraint in site selection. 
While data gravity pulls AI infrastructure toward locations rich in data and connectivity, power 
gravity—the availability and distribution of energy resources—places hard limits on where 
these facilities can operate. 

This tension is evident in Taiwan’s recent moratorium on large data centers in the north,12 
where the government acknowledged that the existing grid infrastructure could not support 
further expansion. Similarly, Google Ireland’s proposed data center in Dublin faced rejection,13 

in part due to concerns over power supply constraints. These cases highlight how AI-driven 
data centers must balance the benefits of data locality with the reality of power availability, 
ensuring that infrastructure can scale without overwhelming regional energy grids.

Beyond site selection, power gravity can shape the regulatory landscape for AI data centers, 
influencing long-term operational feasibility. In the United States, the Federal Energy 
Regulatory Commission (FERC) recently blocked an agreement that would have allowed 
additional power allocation from a nuclear plant to an Amazon data center, citing risks to grid 
stability and public energy costs.14 

As AI data centers proliferate, businesses must align data gravity and power gravity, ensuring 
that workloads are deployed where both data and power resources are sustainable. Ignoring 
this balance can lead to inefficiencies, operational disruptions, and regulatory setbacks. 
Moving forward, enterprises must collaborate closely with utilities and policymakers to 
integrate AI infrastructure with energy planning, optimizing not just for computational 
performance but also for grid resilience and sustainability.

Edge Computing and IoT

When designing AI and ML solutions for edge and IoT deployments, balancing latency, 
security, and power requirements is essential for creating viable and efficient systems. Unlike 
traditional cloud-based AI, which benefits from abundant computational resources, edge 
deployments must operate within localized power constraints while still meeting performance 
expectations. NEC’s walkthrough face recognition system15 exemplifies this challenge by 
processing image data locally at the edge. This approach mitigates the effects of power 
gravity by reducing the inefficiencies of continuous cloud offloading. At the same time, data 
gravity plays a crucial role—biometric data captured at the edge has inherent security and 
regulatory concerns, making local processing not just a performance optimization but a 
necessity. By keeping inference local, NEC’s system significantly reduces latency for real-
time authentication while also enhancing security by limiting the movement of sensitive data 
across networks to reduce exposure to potential interception or breaches.
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The interplay of power gravity and data gravity makes balancing latency, security, and power 
efficiency particularly complex in edge AI deployments. Devices such as security cameras, 
industrial sensors, and smart city infrastructure must maintain high levels of performance while 
minimizing both energy consumption and the risks associated with moving sensitive data.16 
To achieve this balance, developers can leverage specialized AI accelerators that optimize 
inference efficiency, deploy lightweight neural networks that reduce computational overhead, 
and implement adaptive power management strategies to sustain long-term operation. 

NEC’s solution demonstrates how a well-architected edge AI system can align with latency, 
security, and power requirements, keeping computation and sensitive data where they 
naturally reside while delivering real-time, secure, and energy-efficient AI. As edge AI 
adoption grows, ensuring that designs carefully account for these interdependent forces will 
be key to delivering scalable, sustainable, and secure AI solutions.

Future Trends and Considerations
The Role of Nuclear Energy

The International Energy Agency (IEA) estimates that global investment in grid infrastructure 
was nearly $400 billion in 2024, with projections to rise to around $600 billion annually by 
2030.17 This surge in investment is driven by the decarbonization of electricity generation, 
the growing share of electricity in energy consumption, and the need to fortify grids against 
extreme weather events.

Advances in Power Efficiency

Schneider Electric will leverage its expertise in data center infrastructure and NVIDIA’s 
advanced AI technologies to introduce the first publicly available AI data center reference 
designs.18 These designs are set to redefine the benchmarks for AI deployment and operation 
within data center ecosystems, marking a significant milestone in the industry's evolution. 

As AI applications gain traction across industries and demand more resources than traditional 
computing, the need for processing power has surged exponentially. The rise of AI has 
spurred notable transformations and complexities in data center design and operation, 
prompting companies to swiftly construct and operate energy-stable facilities that are both 
energy-efficient and scalable. This collaboration between Schneider Electric and NVIDIA 
exemplifies the growing trend toward advanced power efficiency solutions for AI applications, 
paving the way for a more efficient, sustainable, and transformative future. 

“We're unlocking the future of AI for organizations,” said Pankaj Sharma, Executive Vice 
President, Secure Power Division & Data Center Business, Schneider Electric. “By combining 
our expertise in data center solutions with NVIDIA's leadership in AI technologies, we’re 
helping organizations to overcome data center infrastructure limitations and unlock the full 
potential of AI.”
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Regulatory and Governance Impacts

As regulatory frameworks surrounding data sovereignty and privacy continue to evolve, 
AI applications and infrastructure must adapt to an increasingly complex landscape of 
governance requirements. Policies such as the GDPR in the EU and China’s PIPL impose 
strict controls on data residency, influencing where AI models can be trained, deployed, 
and executed. This has led to a regionalization trend in cloud and AI infrastructure, where 
providers like Microsoft Azure and AWS have established sovereign cloud offerings to ensure 
compliance with local data protection laws. 

Additionally, financial and healthcare regulations—such as HIPAA in the United States and 
emerging data localization requirements in India19—are prompting businesses to prioritize 
localized data storage and processing. These trends reinforce the concept of data gravity, 
where large volumes of regulatory-bound data necessitate that AI and compute resources 
be collocated in specific jurisdictions. As data accumulates in compliance-driven locations, 
it exerts a gravitational pull on the associated AI workflows, driving further investments in 
localized compute infrastructure to maintain operational efficiency.

Looking ahead, AI governance will not only dictate data storage locations but also 
influence how AI models are trained and deployed, particularly in regulated industries like 
finance, healthcare, and national security. For example, the EU AI Act introduced ethical AI 
requirements that could limit the geographic scope of model training and inferencing based 
on risk assessments. Additionally, as energy consumption and sustainability concerns rise, 
jurisdictions like the Netherlands20 and Singapore21 are imposing moratoriums on new data 
centers, amplifying the impact of power gravity—the tendency for AI compute infrastructure 
to cluster in regions where power availability, cost, and sustainability align with regulatory and 
economic constraints. These forces will drive AI infrastructure strategies toward a balance 
between regulatory compliance, sovereignty, and efficiency, fostering innovations in edge 
computing, federated learning, and on-premises AI solutions to navigate restrictions while 
maintaining performance and scalability.
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Emerging Technologies

Modular nuclear power and private energy generation are emerging technologies that 
may provide new opportunities for organizations to address power gravity challenges in AI 
applications and data center infrastructure. Small modular reactors (SMRs), with their modular 
design and reduced land requirements, present a scalable and flexible energy source ideal 
for creating localized power for data centers, reducing reliance on traditional power grids.

For instance, Oracle is designing a gigawatt-scale data center powered by a trio of SMRs, 
aiming to meet the substantial energy demands of AI operations.22 Similarly, Google has 
entered a strategic partnership to synchronize new clean power generation with data center 
growth, accelerating the transition to a carbon-free future for AI.23 

Companies are also exploring private energy generation through renewable sources to create 
localized power solutions. Google's recent $20 billion partnership with Intersect Power and 
TPG Rise Climate exemplifies this approach, focusing on co-locating data centers with solar, 
wind, and battery storage facilities to ensure an efficient and sustainable energy supply.24 
These initiatives aim to reduce reliance on traditional power grids, enhance energy resilience, 
and address the escalating power demands driven by AI advancements. By integrating 
localized power sources, organizations can mitigate power gravity challenges, ensuring 
energy supply aligns closely with consumption needs, thereby optimizing performance and 
sustainability in their AI and data center operations.

Conclusion
Navigating the challenges of AI infrastructure design requires a delicate balance between 
power, latency, reliability, and data requirements. As AI applications continue to evolve 
and become integral to many industries, it is crucial to address these factors to ensure 
optimal performance and scalability. By understanding the unique demands of AI workloads 
and leveraging strategies such as model optimization, federated learning, and hybrid 
infrastructure approaches, organizations can build and operate efficient, scalable, and 
transformative AI applications. Additionally, considering the regulatory and environmental 
impacts of power consumption and data governance will be essential in creating sustainable 
and compliant AI solutions. Ultimately, the key to success lies in making informed decisions 
that align with both business objectives and technological advancements.
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G L O S S A RY 

AI Factory: A massive storage, networking, and computing investment serving high-volume, 
high-performance training and inference requirements.

CapEx (Capital Expenditure): Up-front costs for acquiring or upgrading physical assets or 
equipment, such as building new data centers or purchasing servers. 

Data Gravity: The tendency for large datasets to “pull” compute and services toward their 
location, often due to bandwidth, latency, or regulatory factors. 

DNS Load Balancing: A technique that distributes network traffic across multiple servers or 
data centers using the Domain Name System, helping balance load and improve reliability. 

Edge-hosted Model: Deployment of AI services where inferencing and responses are 
generated closer to users or data sources, reducing latency and bandwidth.

Federated Learning: A collaborative machine-learning approach in which models train across 
multiple decentralized devices or servers, allowing training data to be distributed without 
centralizing raw data in one place. 

Fine-Tuning: The process of refining a pretrained model with domain-specific datasets to 
improve performance on targeted tasks, as an alternative to creating a new model from scratch. 

Generative AI: AI systems that produce new content (text, images, audio, etc.) rather than just 
analyzing existing data or making classifications. 

GPU (Graphics Processing Unit): A specialized processor originally designed for graphics 
rendering, now essential for parallel computation in AI model training and inference. 

LLM (Large Language Model): A large-scale foundation model, such as GPT, trained on vast 
text corpora and capable of understanding and generating human-like language. 

Model Distillation: The practice of creating a smaller, more efficient AI model from a larger 
one—maintaining key capabilities but reducing computational overhead. 

OpEx (Operational Expenditure): Ongoing costs for running a solution or infrastructure (e.g., 
cloud usage fees, maintenance, utilities), as opposed to more significant up-front capital 
expenses. 

Power Gravity: The tendency for AI compute resources, like GPU clusters, to be positioned in 
locations offering abundant, renewable, or affordable power to manage operational costs and 
scale. 

RAG (Retrieval-Augmented Generation): An AI technique in which models retrieve external 
text or documents during inference to enhance the relevance and depth of generated 
responses. 

SaaS-hosted or Cloud-hosted Model: AI solutions delivered by third-party providers (SaaS 
for fully managed services; cloud-hosted for more architectural control) while still relying on 
external infrastructure. 

SLA (Service-Level Agreement): A contractual commitment specifying the performance, 
availability, or uptime targets that a service provider guarantees to meet. 
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