

Improve the Performance,
Reliability, and Security of
Your Applications with NGINX

Scale, Deploy, and Protect with Ease

Whether you need to integrate advanced monitoring,
strengthen security controls, or manage Kubernetes
workloads, there’s an NGINX solution for you – from our
open source offerings to enterprise-grade products like
NGINX Plus, NGINX Controller, and NGINX App Protect.
Discover a faster and more reliable way to manage
your digital realm – that modern app and DevOps teams
will love – with NGINX.

Download a 30-day free trial today at: nginx.com/free-trial-request/

©2021 F5, Inc. All rights reserved. F5, the F5 logo, NGINX, the NGINX logo, NGINX App Protect, NGINX Controller,
and NGINX Plus are trademarks of F5, Inc. in the U.S. and in certain other countries. Other F5 trademarks are
identified at f5.com. Any other products, services, or company names referenced herein may be trademarks of
their respective owners with no endorsement or affiliation, expressed or implied, claimed by F5, Inc.

Load Balancing
• Deploy anywhere
• Integrate easily

Security
• DDoS mitigation
• Elliptic Curve

Cryptography

Web and Mobile Apps
• Reduce page load time
• Scale when you need it

API Gateway
• API authentication

and authorization
• Real-time monitoring

and alerting

Microservices
• End-to-end Encryption
• Layer 7 routing

Cloud
• Support unlimited apps
• Get predictable pricing

https://www.nginx.com/free-trial-request

Emil Stolarsky and Jaime Woo

97 Things Every SRE
Should Know

Collective Wisdom from the Experts

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-08149-4

[LSI]

97 Things Every SRE Should Know
by Emil Stolarsky and Jaime Woo

Copyright © 2021 Emil Solarsky and Jaime Woo. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: John Devins
Developmental Editor: Corbin Collins
Production Editor: Beth Kelly
Copyeditor: nSight, Inc.
Proofreader: Shannon Turlington

Indexer: nSight, Inc.
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Kate Dullea

November 2020: First Edition

Revision History for the First Edition
2020-11-18: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492081494 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 97 Things Every SRE Should
Know, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s
views. While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and the
authors disclaim all responsibility for errors or omissions, including without limitation respon‐
sibility for damages resulting from the use of or reliance on this work. Use of the information
and instructions contained in this work is at your own risk. If any code samples or other tech‐
nology this work contains or describes is subject to open source licenses or the intellectual
property rights of others, it is your responsibility to ensure that your use thereof complies with
such licenses and/or rights.

This work is part of a collaboration between O’Reilly and NGINX. See our statement of editorial
independence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492081494
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Preface. xv

Part I. New to SRE

1. Site Reliability Engineering in Six Words. 2
Alex Hidalgo

2. Do We Know Why We Really Want Reliability?. 4
Niall Murphy

3. Building Self-Regulating Processes. 6
Denise Yu

4. Four Engineers of an SRE Seder. 8
Jacob Scott

5. The Reliability Stack. 10
Alex Hidalgo

6. Infrastructure: It’s Where the Power Is. 12
Charity Majors

7. Thinking About Resilience. 14
Justin Li

v

8. Observability in the Development Cycle. 16
Charity Majors and Liz Fong-Jones

9. There Is No Magic. 18
Bouke van der Bijl

10. How Wikipedia Is Served to You. 20
Effie Mouzeli

11. Why You Should Understand (a Little) About TCP. 22
Julia Evans

12. The Importance of a Management Interface. 24
Salim Virji

13. When It Comes to Storage, Think Distributed. 26
Salim Virji

14. The Role of Cardinality. 28
Charity Majors and Liz Fong-Jones

15. Security Is like an Onion. 30
Lucas Fontes

16. Use Your Words. 32
Tanya Reilly

17. Where to SRE. 34
Fatema Boxwala

18. Dear Future Team. 36
Frances Rees

19. Sustainability and Burnout. 38
Denise Yu

20. Don’t Take Advice from Graybeards. 40
John Looney

Table of Contentsvi

21. Facing That First Page. 42
Andrew Louis

Part II. Zero to One

22. SRE, at Any Size, Is Cultural. 45
Matthew Huxtable

23. Everyone Is an SRE in a Small Organization. 47
Matthew Huxtable

24. Auditing Your Environment for Improvements. 49
Joan O’Callaghan

25. With Incident Response, Start Small. 51
Thai Wood

26. Solo SRE: Effecting Large-Scale Change as a Single
Individual. 53
Ashley Poole

27. Design Goals for SLO Measurement. 55
Ben Sigelman

28. I Have an Error Budget—Now What?. 57
Alex Hidalgo

29. How to Change Things. 59
Joan O’Callaghan

30. Methodological Debugging. 61
Avishai Ish-Shalom and Nati Cohen

31. How Startups Can Build an SRE Mindset. 63
Tamara Miner

32. Bootstrapping SRE in Enterprises. 65
Vanessa Yiu

Table of Contents vii

33. It’s Okay Not to Know, and It’s Okay to Be Wrong. 67
Todd Palino

34. Storytelling Is a Superpower. 69
Anita Clarke

35. Get Your Work Recognized: Write a Brag Document. . . . 71
Julia Evans and Karla Burnett

Part III. One to Ten

36. Making Work Visible. 74
Lorin Hochstein

37. An Overlooked Engineering Skill. 76
Murali Suriar

38. Unpacking the On-Call Divide. 78
Jason Hand

39. The Maestros of Incident Response. 80
Andrew Louis

40. Effortless Incident Management. 82
Suhail Patel, Miles Bryant, and Chris Evans

41. If You’re Doing Runbooks, Do Them Well. 84
Spike Lindsey

42. Why I Hate Our Playbooks. 86
Frances Rees

43. What Machines Do Well. 88
Michelle Brush

44. Integrating Empathy into SRE Tools. 90
Daniella Niyonkuru

45. Using ChatOps to Implement Empathy. 93
Daniella Niyonkuru

Table of Contentsviii

46. Move Fast to Unbreak Things. 95
Michelle Brush

47. You Don’t Know for Sure Until It Runs in Production. . . . 97
Ingrid Epure

48. Sometimes the Fix Is the Problem. 99
Jake Pittis

49. Legendary. 101
Elise Gale

50. Metrics Are Not SLIs (The Measure Everything Trap). . . 103
Brian Murphy

51. When SLOs Attack: Pathological SLOs and How to
Fix Them. 105
Narayan Desai

52. Holistic Approach to Product Reliability. 107
Kristine Chen and Bart Ponurkiewicz

53. In Search of the Lost Time. 109
Ingrid Epure

54. Unexpected Lessons from Office Hours. 111
Tamara Miner

55. Building Tools for Internal Customers that They
Actually Want to Use. 113
Vinessa Wan

56. It’s About the Individuals and Interactions. 115
Vinessa Wan

57. The Human Baseline in SRE. 117
Effie Mouzeli

58. Remotely Productive or Productively Remote. 119
Avleen Vig

Table of Contents ix

59. Of Margins and Individuals. 121
Kurt Andersen

60. The Importance of Margins in Systems. 123
Kurt Andersen

61. Fewer Spreadsheets, More Napkins. 125
Jacob Bednarz

62. Sneaking in Your DevOps Deliciously. 127
Vinessa Wan

63. Effecting SRE Cultural Changes in Enterprises. 129
Vanessa Yiu

64. To All the SREs I’ve Loved. 131
Felix Glaser

65. Complex: The Most Overloaded Word in Technology. . 133
Laura Nolan

Part IV. Ten to Hundred

66. The Best Advice I Can Give to Teams. 136
Nicole Forsgren

67. Create Your Supporting Artifacts. 138
Daria Barteneva and Eva Parish

68. The Order of Operations for Getting SLO Buy-In. 140
David K. Rensin

69. Heroes Are Necessary, but Hero Culture Is Not. 142
Lei Lopez

70. On-Call Rotations that People Want to Join. 144
Miles Bryant, Chris Evans, and Suhail Patel

Table of Contentsx

71. Study of Human Factors and Team Culture to
Improve Pager Fatigue. 146
Daria Barteneva

72. Optimize for MTTBTB (Mean Time to Back to Bed). 148
Spike Lindsey

73. Mitigating and Preventing Cascading Failures. 150
Rita Lu

74. On-Call Health: The Metric You Could Be Measuring. . . 152
Caitie McCaffrey

75. Helping Leaders Prioritize On-Call Health. 154
Caitie McCaffrey

76. The SRE as a Diplomat. 156
Johnny Boursiquot

77. The Forward-Deployed SRE. 158
Johnny Boursiquot

78. Test Your Disaster Plan. 160
Tanya Reilly

79. Why Training Matters to an SRE Practice and SRE
Matters to Your Training Program. 162
Jennifer Petoff

80. The Power of Uniformity. 164
Chris Evans, Suhail Patel, and Miles Bryant

81. Bytes per User Value. 166
Arshia Mufti

82. Make Your Engineering Blog a Priority. 168
Anita Clarke

83. Don’t Let Anyone Run Code in Your Context. 170
John Looney

Table of Contents xi

84. Trading Places: SRE and Product. 172
Shubheksha Jalan

85. You See Teams, I See Product. 174
Avleen Vig

86. The Performance Emergency Fund. 176
Dawn Parzych

87. Important but Not Urgent: Roadmaps for SREs. 178
Laura Nolan

Part V. The Future of SRE

88. That 50% Thing. 181
Tanya Reilly

89. Following the Path of Safety-Critical Systems. 183
Heidy Khlaaf

90. Applicable and Achievable Static Analysis. 185
Heidy Khlaaf

91. The Importance of Formal Specification. 187
Hillel Wayne

92. Risk and Rot in Sociotechnical Systems. 189
Laura Nolan

93. SRE in Crisis. 191
Niall Murphy

94. Expected Risk Limitations. 193
Blake Bisset

95. Beyond Local Risk: Accounting for Angry Birds. 195
Blake Bisset

96. A Word from Software Safety Nerds. 197
J. Paul Reed

Table of Contentsxii

97. Incidents: A Window into Gaps. 199
Lorin Hochstein

98. The Third Age of SRE. 201
Björn “Beorn” Rabenstein

Contributors. 203

Index. 225

About the Editors. 232

Table of Contents xiii

Preface

If there is one defining trait of an SRE, it would be curiosity. There’s some‐
thing about trying to understand how a system works, bringing it back from
failure, or generally improving it that tickles the parts of our brains where
curiosity lives. This trait is probably common through most, if not all, engi‐
neering practices. There’s a story we both love that seems to encompass this
trait perfectly.

On November 14, 1969, as Apollo 12 was lifting off from its launchpad in
Cape Canaveral, Florida, it was struck by lightning. Twice. First at 36.5 sec‐
onds after liftoff and then again at 52 seconds. Later the incident reports
would show that the lightning had caused a power surge and inadvertently
disconnected the fuel cells, leading to a voltage drop.

In the moment though, there was anything but clarity.

In an instant, every alarm in the Apollo 12 command capsule went off. Tele‐
metry readings in Houston were complete gibberish. For an organization
that thinks through everything, they never thought to ask what to do when
lightning strikes. What were the chances?

Even worse, the stakes couldn’t be higher. If the mission is aborted, NASA
loses a $1.2 billion rocket. If not, and the safety of the astronauts is compro‐
mised, you end up broadcasting a catastrophe to the whole world. When lis‐
tening back to a recording of mission control, you can feel the tension and
stress.

There’s a moment of silence on the audio loop before someone cuts in: “try
SCE to Aux.” This wasn’t something ever tried before. So much so, someone
radios back “what the hell is that?” With no better options, the command is
relayed to the astronauts. And it worked. After searching for the switch, they
flip it, and everything immediately returns back to normal.

xv

The NASA engineer John Aaron gave the obscure suggestion. A year earlier
he’d been working in an Apollo capsule simulator and ended up with a simi‐
lar mess of telemetry readings. Rather than reset the simulator, he decided to
play around and try fixing the problem. He’d discover that by shifting the sig‐
nal conditioning electronics, or SCE, system to its auxiliary setting, it could
operate in low-voltage conditions, restoring telemetry. SCE to Aux.

The lightning strike was a black swan event, something NASA had never
simulated before. What inspired John Aaron to dig around to uncover the
cause of that specific data signature? In an oral history with NASA, he credits
a “natural curiosity with why things work and how they work.”

Curiosity is a trait found in many SREs. We were reminded of a conversation
with an SRE friend in Dublin who shared how she was the type to keep ask‐
ing why about the systems she worked with. That echoes John Aaron talking
about how he always wanted to know how things around him worked, and
not stopping until he had a deep understanding.

That willingness to learn makes sense for SREs, given the need to work with
complex systems. The systems change constantly, and the role requires
someone wanting to ask questions about how they work. The inquisitivity
means rather than seeing one specific part of the system as their domain,
SREs instead wonder about all the parts of the system, and how they func‐
tion together.

But it’s not just the technical system. SREs need to be curious about people
too, the socio- part of the sociotechnical system. Without that, you couldn’t
bring different teams together to create meaningful SLOs. You couldn’t navi‐
gate personality types to properly respond to incidents. You’d be satisfied
with just the five whys and miss out on uncovering the lessons to be learned
post-incident.

We want this book to give you an opportunity to explore, play, and satisfy
your curiosity. Here, we’ve laid out essays to do so. (You may notice there are
actually 98 essays! We figured everyone likes a little something extra on the
house.) They’re written by experts from across the industry, guiding you
through a range of topics from the fundamentals of SRE to the bleeding
edge. This book was written and edited during the pandemic, and we are
deeply grateful for everyone who contributed during such a trying time.

We believe that SRE needs to be filled with many voices, and that new voices
should always be welcome. New ideas from different points of view and a
wide range of experiences will help evolve this field that is, honestly,
remarkably still in its early days. Our dream is that as you read these essays,

Prefacexvi

https://oreil.ly/xDv75

they spark your curiosity, and move you forward in your SRE journey, no
matter where you’re currently at.

We’re beyond curious to read what a batch of essays on SRE will look like in
5 or 10 years.

How We Structured the Book
SRE, although it deals with complex technical systems, is ultimately a cul‐
tural practice. Culture is the product of people, and that inspired us to orga‐
nize this book into sections based on the number of SREs you have in your
organization—what you specifically tackle and how your day looks like
depends on how many SREs there are. We’ve broken the book’s essays into
“New to SRE,” 0-1 SRE, 1-10 SREs, 10-100 SREs, and the “Future of SRE.”

Readers looking for guidance on where to start first can jump right to the
section that applies most to them; however, you will still find value in read‐
ing essays from sections that don’t currently apply to your day-to-day.

At 0 to 1 SRE, no one has been designated an SRE yet, or you have found
your very first one, a role that can seem almost lonely.

At 1 to 10 SREs, you are forming a team, and there is sharing of knowledge
and the ability to divvy up work.

At 10 to 100 SREs, you have become an organization, and you need to think
not just about the systems you’re working on, but also about how you orga‐
nize that many SREs.

“New to SRE” covers foundational topics (although not exhaustively!) and is
helpful both for those just starting their SRE journeys as well as a refresher
for even the most seasoned SRE. “Future of SRE” contains essays that look
into where SRE is potentially headed, or are (for the moment) sitting on the
zeitgeist.

There’s no need to read the book in any particular order. You can read it
from cover to cover. Or, if you are curious about a particular topic, flip to the
index where you can find all the essays on that topic. Use this as a reference
guide, or a source of inspiration—one that can provide a jolt as needed. Or,
maybe create a reading club, where once a week you pick an essay to discuss
with your coworkers. This is the beauty of a collection of essays. We hope
you enjoy reading them as much as we did.

Preface xvii

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided
technology and business training, knowledge, and
insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training cour‐
ses, in-depth learning paths, interactive coding environments, and a vast col‐
lection of text and video from O’Reilly and 200+ other publishers. For more
information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at https://oreil.ly/97-SRE.

Email bookquestions@oreilly.com to comment or ask technical questions
about this book.

Visit http://oreilly.com for news and information about our courses and
books.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Prefacexviii

http://oreilly.com
http://oreilly.com
https://oreil.ly/97-SRE
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

Acknowledgments
Writing a book makes you acutely aware of the passage of time—even more
so during a pandemic. During tumultuous times, you realize how important
the people in your lives are. Some we can’t hug until this pandemic is over.
Others we won’t be able to hug even after then. We hold dear thoughts of our
loved ones here and beyond.

Preface xix

PART I

New to SRE

Site Reliability
Engineering in Six Words
Alex Hidalgo
Nobl9

When someone I’ve just met asks me what I do for a living, I generally fall
back to something along the lines of, “I’m a site reliability engineer. We keep
large-scale computer services reliable.” For many people, this is sufficiently
boring and our general pleasantries continue. Occasionally, though, I run
into people who are a bit more curious than that: “Oh, that sounds interest‐
ing! How do you do that?”

That’s a difficult question to answer! What do SREs actually do? For many
years, I’d rely on just listing an assortment of things—some of which have
made their way into essays in this very book. Although an answer like that
wasn’t exactly wrong, it also never felt truly satisfying. There had to be a more
cohesive answer, and when I reflect on my decade of performing this job, I
think I’ve finally figured it out. Virtually everything SREs do relies on our
ability to do six things: measure, analyze, decide, act, reflect, and repeat.

Measuring does not just mean collecting data. To measure something, you
have some sort of goal in mind. You don’t collect flour to bake a cake, you
measure the flour; otherwise, things will end up a mess. SREs need to meas‐
ure things because pure data isn’t enough. Our data needs to be meaningful.
We need to be able to answer the question, “Is this service doing what its
users need it to be doing?”

Once you have measurements, the next step is to analyze them. This is when
some basic statistics and probability analysis can be helpful. Learn as much
as you can from the things you are measuring by using the centuries of study
and knowledge mathematicians have made available to us.

Now you’ve done your best at measuring and analyzing how a certain thing
is behaving. Use this analysis to make a decision about how best to move into
the future!

2

Then you must act. You actually need to do the thing you decided to do. It
could be that this action is actually to take no action at all!

Finally, reflect on what you did once you’ve done it. Place a critical—but
blameless—eye squarely on whatever you’ve done. You can generally learn
much more from this process than you can from your initial measurement
analysis.

Now you start over. Something has either changed about the world due to
your decision or it hasn’t, and you need to keep measuring to see what the
real impact of this action, or inaction, actually was. Keep measuring and then
analyze, decide, act, reflect, and repeat again and again. It’s the SRE way.
Incremental progress is the only reliable way to reliability.

Site reliability engineering is a broad discipline. We are often called on to be
software engineers, system administrators, network engineers, systems archi‐
tects, and even educators or consultants, but one paradigm that flows
through all of those roles is that SRE is data-driven. Measure the things you
need to measure, analyze the data you collect, decide what to do with this
analysis, act on your findings, reflect on your decision, and then do it all
over, again and again and again.

Measure, analyze, decide, act, reflect and repeat: that’s site reliability engi‐
neering in six words.

Collective Wisdom from the Experts 3

Do We Know Why We
Really Want Reliability?
Niall Murphy
Microsoft

Do we really understand reliability, or why we would want it?

This may seem like a strange question. It is an article of faith in this commu‐
nity that unreachable online services have no value. But even a moment’s
thought will show you that’s simply not true. You yourself encounter inter‐
mittent computer failure almost every day. Some contexts even seem to
expect it; with web services, users are highly accustomed to hitting refresh or
(for more difficult problems) clearing cookies, restarting a browser, or
restarting a machine. Even services themselves have retry protocols.

A certain amount of fudge is baked into every human–computer interaction.
Even for longer outages, people almost always come back if you’re down for
a few minutes, and have even more patience, depending on the uniqueness of
the service provided.

It’s anecdotal, but suggestive: I had a conversation with a very well-known
company a couple of years ago when they said they didn’t put any money
into reliability because their particular customer base had nowhere else to go.
Therefore, time they spent on reliability would be time they wouldn’t spend
on capturing revenue; it wasn’t worth it.

I gasped inwardly at the time, but I’ve thought about it often since, and I turn
the question toward us, as a community, now: do we have any real argument
against that statement, as a community and a profession? Can we put any
numbers around it? Understand what the trade-offs are? Make anything
other than emotive claims about brand image? Come up with a real explana‐
tion of why companies previously lambasted for their unreliability are worth
tens of billions today, never mind companies where the inability to access the
site costs real money, outages frequently last hours, yet usage, revenue, and
profits keep going up?

4

https://oreil.ly/sk4A_
http://twitter.com
https://oreil.ly/lHuMO
https://oreil.ly/Ak3rc
https://oreil.ly/Ak3rc
https://oreil.ly/opYsE

I don’t like it, but I think it’s true; in a rising market, if a company could
choose to acquire new customers or retain existing ones, every economic
incentive is toward customer acquisition, since each customer lost would be
replaced by many more gained. Of course, a systematically unreliable plat‐
form would eventually lose you as many customers as you acquired, but you
have time to fix that, and customers are often reluctant to change, even given
poor service.

Product developers know this, and this is why our conversations are so
fraught. Yet we don’t have a fully satisfactory way to talk about these trade-
offs today; the true value of reliability, particularly for markets that are not
rising, non-web contexts, or other areas where SREs are not commonly
found, is hard to articulate. The SLO model, which is meant to be able to
articulate the nuances of precisely how much unreliability a given customer
base can tolerate in the aggregate, is not actually sufficient; as typically used,
it cannot distinguish between (say) 20 minutes of almost complete unavaila‐
bility or two hours of intermittent unavailability. These situations are actually
very different from the customer experience point of view and, potentially,
also from the revenue generation point of view.

We have sparse data points that tenuously suggest the outlines of an
approach that would enable us to understand, and argue successfully for why
to spend time on reliability in the face of limited time and resources—or
even worse, in a rising market—but we are very far from understanding it
all.

This is therefore, depending on your point of view, quite worrying or a won‐
derful opportunity to stop spending a lot of time and money.

Collective Wisdom from the Experts 5

https://oreil.ly/TlBTu

Building Self-Regulating
Processes
Denise Yu
GitHub

In Camille Fournier’s excellent book, The Manager’s Path (O’Reilly, 2017), she
advises readers to look for “self-regulating processes,” which caught my eye.
My undergraduate degree is in economics, and I jump at any opportunity to
apply economic thinking to practical problem-solving. Self-regulating pro‐
cesses are tiny cycles of checks and balances, and it’s cool to find them in
human systems.

In my tech network, I often hear about process experiments succeeding or
failing by the emotional or political bandwidth of the person who initiated
the experiment. For example, when introducing pair-programming to a new
group of engineers, it often takes a confident, charismatic person to coax
reluctant teammates to start pairing for the first time.

In fact, they might not even call it pairing to begin with—they’ll say, “Hey, do
you wanna come over here and have a look at this with me?” But when that
person leaves a company, pairing might fall by the wayside, because it was
something driven by the strength of a personality. These short-lived process
innovations are valuable, but they don’t last; so in that context, we never
learn how to adjust them, measure them, and scale them.

Self-regulating processes, on the other hand, don’t depend on strong person‐
alities to persist. The way that they work is by aligning incentives (both the
positive and negative kind) in such a way that no one person is stuck with
the unpleasant task of hassling other people to do their parts. Micromanage‐
ment represents exactly the opposite outcome of a self-regulating process.

To understand how to align incentives, let’s talk about what incentives are.
Positive incentives represent net gains for an individual if they behave in a
certain manner. Think carrots, not sticks. They come in many flavors: finan‐
cial (e.g., wages, stock awards), social (e.g., peer recognition), or intrinsic
(e.g., mastery of a particular skill), to name a few.

6

https://oreil.ly/Bhs1O

Most people are driven by the positive incentive of wanting to earn more
money, and perhaps wanting a better title. To facilitate that, most people,
given that the organization exhibits more of a generative culture, would
agree that receiving honest and constructive feedback from their peers is a
good way to improve their performance.

Negative incentives are the opposite: net losses. Similarly, most people react
to a set of negative incentives, such as wanting to avoid negative social reper‐
cussions and unnecessarily spending social capital. Consider that at compa‐
nies with unlimited vacation policies, people end up taking fewer vacation
days than their peers who accrue fixed vacation throughout the year. This is
because a financial incentive structure became replaced by a social incentive
structure, and the social anti-incentives feel more costly, in part because
they’re really hard to quantify, and we’re wired to dislike uncertainty.

A self-regulating process sets up the right combination of positive incentives
and negative incentives, so that people are intrinsically motivated to follow
the process, and no external encouragement or facilitation is necessarily
required once things get underway. Balancing positive with negative incen‐
tives is important: too much negativity and people will start to feel fearful;
too much positivity and you bank on the assumption that everyone feels
equally motivated by the same carrots. (That often is not true.)

In software engineering companies, and probably in other companies as well,
I believe that you can design self-regulating processes if you stop and think
about what incentives are in play.

Collective Wisdom from the Experts 7

https://oreil.ly/T5Tpd
https://oreil.ly/-TpHv
https://oreil.ly/-TpHv

Four Engineers of an
SRE Seder
Jacob Scott
Stripe

During Seder, families recite a passage addressing the questions one might
ask about the Passover holiday. The questions, presented from the points of
view of four children, help pass the importance of the holiday down the gen‐
erations. Here I present four software engineers asking about the importance
of reliability.

The selfish engineer asks, “Why is your reliability so poor?” By using the
word your and not our, the selfish engineer disclaims responsibility for relia‐
bility. Life is certainly easier when reliability is your job, not our job—but
reliability is more and more frequently a collective responsibility.

To him, we must explain the importance, both to himself and to his team, of
owning his code in production. As he decides what sort of observability to
add to his features, which queries to make to data stores, or whether to push
back on a resource-intensive feature request, this engineer—like every
other—affects the behavior and reliability of production. None of us can
avoid this power over production, and if we avoid responsibility for it, we
implicitly place that burden on others. Given the importance and inevitabil‐
ity of this responsibility, we ask him to consider whether he might find more
career growth and success in embracing responsibility than shirking it.

The junior engineer asks, “It works on my machine. Why isn’t that enough?”
If only success in development environments implied success in production!
To him, we sketch the vast difference between development and production.
We might compare the scale and complexity of data in production to the
limited, curated snapshot optimized for development. Or, we might contrast
the sophisticated networking topology configured in production with the
local and stubbed services in development that help him test and iterate
quickly.

We suggest this engineer review a few of the spiciest or most mind-melting
incident reports in our archive. Among the contributing factors whose

8

confluence spawned these incidents, a few would certainly never show up
(let alone reproducibly!) in a development environment.

The wise engineer, having responded to many incidents and read widely,
asks, “How can error budgets prevent my next serious incident?” The oh-so-
unfortunate truth is that error budgets are retrospective and cannot
predict—let alone prevent—incidents.

To her, we note that although error budgets can’t predict or prevent inci‐
dents, they provide a foundation for preparing for incidents. The process of
defining error budgets creates alignment, transparency, and common ground
about what reliability means, not just to engineers and users but also to exec‐
utives, sales and marketing, front-line support, and the organization writ
large.

We ask her to be curious about her error budgets and to reflect on what she
learns about our users’ desires for our system. Does she find that error budg‐
ets help elicit an active and ongoing discussion about the behavior of pro‐
duction? Over the long haul, this helps reduce the likelihood and impact of
incidents.

Finally, the engineer who isn’t sure how to frame their question asks, “Why is
reliability important? Why should we be curious and passionate about it?” To
them, we state that reliability is about systems behaving as expected, and
users want software to be reliable! Availability—responding quickly and cor‐
rectly to requests or, colloquially, not failing—is one common example. Users
also want software to change and improve, often in the form of new features,
better performance, or reduction in cost.

These desires are frequently in tension with each other, and he should reflect
on SRE as an approach to quantifying reliability to help our entire organiza‐
tion understand the trade-offs involved.

Collective Wisdom from the Experts 9

The Reliability Stack
Alex Hidalgo
Nobl9

Think about your favorite digital media streaming service. You’ve settled
down on the couch to watch a movie and you click a button on your remote.
Most of the time, the movie buffers for a few seconds and then starts playing.

But what if the movie takes a full 20 seconds to buffer? You’d probably be a
little annoyed in the moment, but ultimately, the rest of the movie streams
just fine. Even with this little bit of failure, this service has still acted reliably
for you, since the majority of the time it doesn’t take anywhere near 20
seconds.

What happens if it takes 20 seconds to buffer every single time? Now things
go from momentarily annoying to fully unreliable. With the plethora of digi‐
tal media streaming services available, you might choose to abandon this ser‐
vice and switch to a different one.

Nothing is ever perfect and nothing can ever be 100% reliable. This is not
only the way of the world, it also turns out that people are totally fine with
this! No one actually expects computer systems to run perfectly all the time;
we just need them to be reliable enough often enough.

How do we figure out the right level of reliability? This is where the reliabil‐
ity stack comes into play. It’s made up of three components: SLIs (service
level indicators), SLOs (service level objectives), and error budgets.

At the base of the reliability stack are SLIs, which are measurements of your
service from your users’ point of view. Why users? Because that’s who your
system has to perform well for. Your users determine whether you’re being
reliable. No user cares whether things look good from your end if their mov‐
ies take 20 seconds to buffer every single time. An example SLI might be,
“Movies buffer for 5 seconds or less.”

Next are SLOs themselves. SLOs are fueled by SLIs. If SLIs are measurements
about how your service is operating, SLOs are targets for how often you want
them to be operating well enough. Using our example, you might now want
to say something like, “Movies buffer for 5 seconds or less 99% of the time.”

10

If buffer times exceed 5 seconds only once in 100 times, people will probably
be okay with this.

Nothing is ever perfect, so don’t aim for it. Ensure instead that you’re aiming
to be reliable just enough of the time. You’ll spend an infinite number of
resources—both financial and human—trying to aim for perfection.

Finally, at the top of the reliability stack are error budgets, which are
informed by SLOs and are simply a measurement of how you’ve performed
against your target over a period of time. It’s much more useful to know how
you’ve performed from your users’ perspective over a week, a month, or a
quarter than simply knowing how you’re performing right now. An error
budget lets you say things like, “We cannot buffer reliably for 7 hours, 18
minutes, and 17 seconds every 30 days.” You can use error budgets to think
more holistically about the reliability of your service. Use this data to have
better discussions and make better decisions about addressing reliability
concerns.

You can’t be perfect, and it turns out no one expects you to be perfect any‐
way. Use the reliability stack to ensure that you’re being reliable enough.

Collective Wisdom from the Experts 11

Infrastructure: It’s Where
the Power Is
Charity Majors
Honeycomb.io

“Why infrastructure, why ops?” a coworker asked me, years ago. It was a
software engineer, after a particularly gnarly on-call rotation, and the subtext
was crystal clear: was I tricked into making this career choice—the sacrifice
of being tethered to a pager, the pressure of being the debugger of last resort?
Who would ever choose this life?

Without missing a beat, I answered: “Because that’s where the power is.”
Then I stopped in surprise, hearing what I had said. We aren’t used to think‐
ing of infra as a powerful role. CS (computer science) departments, the
media, and the popular imagination all revolve around algorithms and data
structures, the heroic writer of code and shipper of features.

To business people, operations is a cost center, an unfortunate necessity. This
is a historical artifact; operations should be seen as yin to development’s
yang, united and inseparable, never “someone else’s job.” Biz is the why, dev is
the what, and ops is the how. Whether your company has one person or one
thousand.

Code is ephemeral. Features come and go. Crafting a product in a modern
development environment feels to me like erecting cloud castles in the sky:
abstractions atop other abstractions, building up this rich mental world in
your mind.

Software engineers are modern magicians, crafting unthinkably complex
spells and incantations that spin gold from straw, generating immense real
value practically out of thin air. But what happens when those spells go
wrong?

A couple of years into my first job as a sysadmin, I started to notice a pattern
when very senior engineers would come to me and the other ops people.
They understood their code far better than I did, but when it stopped work‐
ing in production, they would panic. Why didn’t it work like it did yesterday?

12

What changed? It was as though production were a foreign land, and they
needed me to accompany them as a translator.

I always had crushes on the people who could turn “it’s slow” into “the query
planner is doing multiple full-table scans because it is using the wrong com‐
pound index.” Any of us could see that it was slow; explaining why was next-
level interesting.

Software can seem as mysterious and arcane as any ritual of the occult, but
infrastructure engineers have a grimoire of tools to inspect the ritual relent‐
lessly from every possible angle. Trace the library calls, scan the ports, step
through the system calls, dump the packets.

Infrastructure tools remind us that software operates according to the laws of
scientific realism. Every mystery will yield an answer if pursued with enough
persistence. To do so requires a world-weary fearlessness when things go
wrong. The harder and more subtle the bug, the more interested and ener‐
gized they become. Infra engineers have never seen an abstraction we trust to
work as designed. The grander the claim, the more pessimistic we become.

We aren’t so much cynical as we are grimly certain that everything will fail,
and it will fall to us to save the world with nothing but a paper clip and a
soldering iron. We compulsively peek under the lid to see what horrifying
things are being done in the name of monkey patching.

When we get together with other infrastructure engineers over a pint, we
boast about the outages we have seen, the bugs we have found, and the you-
won’t-believe-what-happened-last-holiday stories.

There is power in knowing how to be self-sufficient, in having the tools and
the fearlessness, to track the answer down through layer after layer of
abstractions. At the base of every technical pile sits the speed of light, which
cannot be messed with or mocked up.

Collective Wisdom from the Experts 13

Thinking About Resilience
Justin Li
Shopify

In resilient systems, important variables stay in their desired state even when
other variables leave their normal state. For example, many animals are able
to avoid dying from minor cuts. When skin is cut, unprotected blood-
carrying tissue is exposed, yet blood loss quickly trends back to zero as a clot
forms. Improving a system’s resilience makes dependent variables describing
that system more independent.

Networked systems are often required to respond quickly, expressed as a
state like this: 99th percentile latency below one second. Ideally, this is held
true all the way to the required limits of the system, for instance, 1s peak
request rate of 100000 per second. We want to ensure that the latency variable
isn’t too dependent on the request rate variable.

Here are ways we improve resilience:

Load reduction
Throttling, load shedding/prioritization, queuing, load balancing

Latency reduction
Caching, regional replication

Load adaptation
Autoscaling, overprovisioning

Resilience (specifically)
Timeouts, circuit breakers, bulkheads, retries, failovers, fallbacks

Meta-techniques
Improving tooling, perhaps to scale up or fail over faster; especially
impactful in cases when slow humans are in a system’s critical path

Some of these tools are not usually associated with resilience (they are gen‐
eral optimization techniques), but all influence the dependence of critical
variables. Sometimes they interact in useful ways. For example, retries can
correct for transient downtime caused by a failover.

14

These tools also recur at multiple layers. TCP retransmission works against
packet loss, but application-level retries are also used, because TCP can’t
retry an entire stream (among other reasons).

Let’s continue the latency example. In practice, the relationship between
request rate and latency is not linear but usually follows some rational func‐
tion. Until a certain load is reached, the system is unsaturated and can
respond quickly, but when load approaches capacity, queues quickly fill up
and latency grows accordingly.

We can scale the system by adding servers, which stretches the function hori‐
zontally, allowing more requests to be served before violating the latency
objective. This costs money. If we don’t like that, we can look at other
options, such as load shedding: drop work (limit request rate) when the sys‐
tem is overloaded (latency reaches its limit).

Errors have a monetary impact too, but it might be less than paying for more
servers if this condition is rare enough. The cost can be reduced further by
dropping unimportant work first. Most important, the load-shedding
approach entirely prevents unbounded latency growth, avoiding potential
cascading failure.

You can think about every resilience tool as illustrated below:

By building in resilience, we can help increase reliability so the system boun‐
ces back and continues to function under adverse conditions.

Collective Wisdom from the Experts 15

Observability in the
Development Cycle
Charity Majors and
Liz Fong-Jones
Honeycomb.io

Catching bugs cleanly, resolving them swiftly, and preventing them from
becoming a backlog of technical debt that weighs down the development
process relies on a team’s ability to find those bugs quickly. Yet software
development teams often hinder their ability to do so for a variety of reasons.

Consider organizations where software engineers aren’t responsible for oper‐
ating their software in production. Engineers merge their code into master,
cross their fingers that this change won’t be one that breaks prod, and wait to
get paged if a problem occurs. Sometimes they get paged soon after deploy‐
ment. The deployment is then rolled back and the triggering changes can be
examined for bugs. More likely, problems wouldn’t be detected for hours,
days, weeks, or months after that code had been merged. By that time, it’s
extremely difficult to pick out the origin of the bug, remember the context,
or decipher the original intent behind why that code was written or why it
shipped.

Resolving bugs quickly depends critically on being able to examine the prob‐
lem while the original intent is still fresh in the original author’s head. It will
never again be as easy to debug a problem as it was right after it was written
and shipped. It only gets harder from there; speed is key. At first glance, the
links between observability and writing better software may not be clear, but
it is this need for debugging quickly that deeply intertwines the two.

Newcomers to observability often make the mistake of thinking that observ‐
ability is a way to debug your code, similar to using highly verbose logging.
Although it’s possible to debug your code, using observability tools, that is
not the primary purpose of observability. Observability operates on the order
of systems, not on the order of functions. Emitting enough detail at the lines
level to debug code reliably would emit so much output that it would swamp
most observability systems with an obscene amount of storage and scale. It

16

would simply be impractical to pay for a system capable of doing that
because it would likely cost somewhere in the ballpark of 1X–10X as much as
your system itself.

Observability is not for debugging your code logic. Observability is for figur‐
ing out where in your systems to find the code you need to debug. Observability
tools help you narrow down swiftly where problems may be occurring. From
which component did an error originate? Where is latency being introduced?
Where was a piece of this data munged? Which hop is taking up the most
processing time? Is that wait time evenly distributed across all users, or is it
only experienced by a subset thereof? Observability helps your investigation
of problems pinpoint likely sources.

Often, observability will also give you a good idea of what might be happen‐
ing in or around an affected component or what the bug might be, or even
provide hints to where the bug is actually happening—your code, the plat‐
form’s code, or a higher-level architectural object.

Once you’ve identified where the bug lives and some qualities about how it
arises, observability’s job is done. If you want to dive deeper into the code
itself, the tool you want is a debugger (for example, gdb). Once you suspect
how to reproduce the problem, you can spin up a local instance of the code,
copy over the full context from the service, and continue your investigation.
Though related, the difference between an observability tool and a debugger
is an order of scale; like a telescope and a microscope, they are primarily
designed for different things.

Adapted from the upcoming book Observability Engineering, expected in
2021 from O’Reilly.

Collective Wisdom from the Experts 17

There Is No Magic
Bouke van der Bijl

When working with computers it’s easy to get overwhelmed with the com‐
plexity of it all. You write some code, run it through a compiler, and execute
it on your machine. It seems like magic.

But when issues occur and things break down, it’s important to remember
that there is no magic. These systems we work with are designed and built by
humans like you, and that means that they can also be understood by
humans like you. At every step, from the interface on the screen to the atoms
your processor is built out of, someone considered how things should work.

I tend to work on two layers at the same time: the code I’m writing and the
lower-level code I’m using. I switch back and forth between my work in pro‐
gress and the source code of the Ruby gem, the Go compiler, or even a disas‐
sembly if the source is not available. This gives me context about my
dependency: are there comments explaining weird behavior? Should I be
using a different function mentioned in the code? Maybe an argument that
wasn’t immediately clear from the docs, or even a glaring bug?

I find this context switching to be a sort of superpower: X-ray goggles for the
software developer. You can look deeper many times: from your code, to the
virtual machine running it, to the C language it’s written in, to the assembly
that finally runs. Even then, you can read the Intel x86 manual to try to fig‐
ure out what happens in the machine and how the various instructions are
encoded. Software systems are fractal in nature—every component a world
in itself.

Of course, just because all these things are created by people like us doesn’t
mean that it’s possible for one person to understand it all. We stand on the
shoulders of thousands of giants, and millennia of hours have been put into
the systems to get where we are today.

It would take many lifetimes to know deeply every single step from atoms to
GUIs, and that can be intimidating, but it doesn’t mean we shouldn’t try.

18

When you assume that the components we build our software from are mys‐
terious scriptures that you can’t understand or change, you will make unin‐
formed decisions that don’t account for the actual situation. Instead, you
need to be more clear-eyed. You need to work with the quirks of the underly‐
ing system and use them to your advantage instead of paving over them.

So next time a library you use does something unexpected, take that extra
step and pop open the hood. Poke and prod at the internals, look around,
and make some changes. You will end up pleasantly surprised finding whole
new worlds to explore and improve.

Collective Wisdom from the Experts 19

How Wikipedia Is Served
to You
Effie Mouzeli
Wikimedia Foundation

According to Wikipedia, “Wikipedia is a multilingual, web-based, free-
content encyclopedia project supported by the Wikimedia Foundation and
based on a model of openly editable content.” Serving billions of page views
per month, Wikipedia is one of highest-traffic websites in the world. Let me
explain what happens when you are visiting Wikipedia to read about Saint
Helena or llamas.

First, these are the three most important building blocks of our
infrastructure:

• The CDN (content delivery network), which is our caching layer
• The application layer
• Open-source software

When you request a page, the magic of our geographic DNS and internet
routing sends this request to the nearest Wikimedia data center, based on
your location, while with the wizardry of TLS, ATS (Apache Traffic Server)
encrypts your connection. Each data center has two caching layers: in-
memory (Varnish) and on disk (ATS). Most requests terminate here, because
the hottest URLs are always cached. In case of cache misses, the request will
be forwarded to the application layer, which might be very near if this is a
primary data center, or a bit farther away if this is a caching point.

Our application layer has MediaWiki at its core, supported by a number of
microservices and databases. MediaWiki is an Apache, PHP, MySQL open-
source application, developed for Wikipedia. MediaWiki will look for a ren‐
dered version of the article initially on Memcached and, if not found, then
on a MariaDB database cluster called Parser Cache.

If MediaWiki gets misses from Memcached and Parser Cache, it will pull the
article’s Wikitext and render it. Articles are stored in two database clusters:

20

https://www.mediawiki.org
https://oreil.ly/nA9TI

1 Thomas Steiner, Seth Hooland, and Ed Summers. (2013). MJ no more: Using concurrent Wikipe‐
dia edit spikes with social network plausibility checks for breaking news detection, 791–794.
10.1145/2487788.2488049.

the Wikitext cluster, where Wikitext is stored in blobs, and the metadata
cluster, which tells MediaWiki where an article is located in the Wikitext
cluster. After an article is rendered, it is stored in turn in all aforementioned
caches and, of course, is served back to you.

Things are slightly simpler when the request is a media file rather than a
page. On a cache miss in the caching layer, ATS will directly fetch the file
from Swift, a scalable object storage system by OpenStack.

As you can see, MediaWiki is surrounded by a very thick caching layer, and
the reason is simple: rendering pages is costly. Furthermore, when a page is
edited, it needs to be invalidated from all these caches and then populated
again. When very famous people die, our infrastructure experiences a phe‐
nomenon called celebrity death spikes (or the Michael Jackson effect 1). Dur‐
ing this event, everyone links to Wikipedia to read about them while editors
are spiking the edit rate by constantly updating the person’s article. Eventu‐
ally, this could cause noticeable load as heavy read traffic focuses on an arti‐
cle that’s constantly being invalidated from caches.

The final building block is our use of open-source software. Everything we
run in our infrastructure is open source, including in-house developed appli‐
cations and tools. The community around the Wikimedia movement is not
only limited to caring for the content in the various projects, its contribution
extends to the software and systems serving it. Open source made it possible
for members of the community to contribute; it is an integral part of Wikipe‐
dia and one of the driving forces behind our technical choices. Wikipedia
obeys Conway’s law in a way: a website that promotes access to free knowl‐
edge runs on free software.

It might sound surprising that one of the most popular websites is run using
only open-source software and without an army of engineers—but this is
Wikipedia; openness is part of its existence.

Collective Wisdom from the Experts 21

https://oreil.ly/MoBll
https://oreil.ly/0PXjw

Why You Should
Understand (a Little)
About TCP
Julia Evans
Wizard Zines

I’d like to convince you that understanding a little bit about TCP (like how
packets work and what an ACK is) is important, even if you only have sys‐
tems that are making regular boring HTTP requests. Let’s start with a mys‐
tery I ran into at work: the case of the extra 40 milliseconds.

One day, someone mentioned in Slack, “Hey, I’m publishing messages to
NSQ and it’s taking 40 ms each time.” A little background: NSQ is a queue.
The way you publish a message is to make an HTTP request on localhost. It
really should not take 40 milliseconds to send an HTTP request to localhost.
Something was terribly wrong. The NSQ daemon wasn’t under high CPU
load, it wasn’t using a lot of memory, it didn’t seem to be in a garbage collec‐
tion pause. Help!

Then I remembered an article I’d read a week before, called, “In Search of
Performance: How We Shaved 200 ms Off Every POST Request.” That article
described how the combination of two TCP features (delayed ACKs and
Nagle’s algorithm) conspired to add a lot of extra time to every POST
request.

Here’s how delayed ACKs plus Nagle’s algorithm can make your HTTP
requests slow. I’ll tell you what was happening in the blog post I read. First,
some background about their setup:

• They had an application making requests to HAProxy.
• Their HTTP library (Ruby’s Net::HTTP) was sending POST requests in

two small packets (one for the headers and one for the body).

22

Here’s what the TCP exchange looked like:

1. client: hi! here’s packet 1.
2. server: <silence>. (“I’ll ACK eventually but let’s just wait for the second

packet.”)
3. client: <silence>. (“I have more data to send but let’s wait for the ACK.”)
4. server: ok i’m bored. here’s an ACK.
5. client: great here’s the second packet!!!

That period while the client and server are both passive-aggressively waiting
for the other to send information? That’s the extra 200 ms! The client was
waiting because of Nagle’s algorithm, and the server was waiting because of
delayed ACKs.

Delayed ACKs and Nagle’s algorithm are both enabled by default on Linux,
so this isn’t that unusual. If you send your data in more than one TCP packet,
it can happen to you.

The solution is TCP_NODELAY. When I read this article, I thought, “That
can’t be my problem, can it? Can it? The problem can’t be with TCP!” But I’d
read that you could fix this by enabling TCP_NODELAY on the client, a
socket option that disables Nagle’s algorithm, and that seemed easy to test, so
I committed a change, turning on TCP_NODELAY for our application, and
BOOM. All of the 40 ms delays instantly disappeared. Everything was fixed. I
was a wizard.

You can’t fix TCP problems without understanding TCP. I used to think that
TCP was really low-level and that I did not need to understand it—which is
mostly true! But sometimes in real life, you have a bug, and that bug is
because of something in the TCP algorithm. I’ve found that in operations
work, a surprising number of these bugs are caused by a low-level compo‐
nent of my system that I previously thought was obscure and suddenly have
to learn a lot more about very quickly.

The reason I was able to understand and fix this bug is that, two years earlier,
I’d spent a week writing a toy TCP stack in Python to learn how TCP works.
Having a basic understanding of the TCP protocol and how packets are
ACKed really helped me work through this problem.

Collective Wisdom from the Experts 23

The Importance of a
Management Interface
Salim Virji
Google

During an outage, you care more about being able to control the system than
about the system answering all user-facing requests. By adapting the concept
of a control plane from networking hardware, engineers can separate respon‐
sibility for data transmission from control messages. The control plane pro‐
vides a uniform point of entry for administrative and operational tasks,
distinct from sending user data itself. For reliability purposes, this separation
provides a way for operators to manage a system even when it is not func‐
tioning as expected. Let’s look at why this is important and how you know
when to separate these parts of a system.

In an early version of the GFS (Google File System), a single designated node
was responsible for all data lookups: each of the thousands of clients began
their request for data by asking this single node for the canonical location.
This single node was also responsible for responding to administrative
requests such as, “How many data requests are in the queue right now?” The
same process was responsible for these two sets of requests—one user-facing
and critical and the other strictly internal and also critical—and the process
served responses to both from the same thread pool. This meant that when
the server was overloaded and unable to process incoming requests, the SREs
responsible for the system were unable to send administrative requests to
lighten the load!

Previous versions of GFS had never been overloaded in this way due to client
demand, which was why the request contention had not been apparent. In
the next version, we separated the resources responsible for operations in the
critical path from resources for administrative action using a control plane,
and GFS production quality was able to take a significant step forward.

By extending this notion across multiple services, the benefits of a single
administrative programming interface become apparent: software for auto‐
mation can send an “update to new version” instruction to a heterogeneous

24

group of servers, and they can interpret it and act accordingly. By dropping
the networking nomenclature, we separate our requests into a management
layer and a data layer and see the importance of separating the two for any
service in the critical path. By drawing a boundary between user-facing oper‐
ations, we can also have more confidence in the instrumentation we apply to
the data measurements; operations in the data layer will use and measure
resources in that layer and not mingle with operations in the management
layer. This in turn leads to a more successful approach to measuring user-
facing operations, a useful metric for service level objectives.

How do you know when you have properly isolated administrative requests
from user requests? Tools such as OpenTracing might show the full path of a
management call as well as a user request, possibly exposing unintended
interactions. Indeed, your systems will likely have connection points such as
where the management interface actually influences user paths. Although the
separation is not total and absolute, an SRE should be able to identify the
boundaries between these parts of the systems they build and operate.

To implement this separation for software that’s already built, such as third-
party applications, you may need to add a separate service that, like a sidecar,
attaches to the core software and, through a common interface such as an
HTTP server, provides an endpoint for the administrative API. This glued-
on management layer may be the precursor to eventual integration with the
core software, or it might be a long-term solution. This approach to system
design separates the request paths servicing user-facing requests from the
requests providing management responsibility.

Collective Wisdom from the Experts 25

When It Comes to
Storage, Think Distributed
Salim Virji
Google

Almost every application, whether on a smartphone or running in a web
browser, generates and stores data. As SREs, we often have the responsibility
for managing the masses of information that guide and inform decisions for
applications as wide-ranging as thermostats to traffic-routing to sharing cat
pictures. Distributed storage systems have gained popularity because they
provide fault-tolerant and reliable approaches to data management and offer
a scalable approach to data storage and retrieval.

Distributed storage is distinct from storage appliances, storage arrays, and
storage physically attached to the computer using it; distributed storage sys‐
tems decouple data producers from the physical media that store this data.
By spreading the risk of data storage across different physical media, the sys‐
tem provides speed and reliability, two features that are fundamental to pro‐
viding a good user experience, whether your user is a human excitedly
sharing photographs with family and friends around the world or another
computer processing data in a pipeline.

Distributed storage enables concurrent client access: as the system writes the
data to multiple locations, there’s no single disk head to block all read opera‐
tions. Additional copies of the data can be made asynchronously to support
increased read demand from clients if the data becomes really hot, such as a
popular video. This is an example of the horizontal scaling made possible by
a distributed system; although RAID (redundant array of independent disks)
systems keep multiple copies of the data, they are not available for concur‐
rent client reads in this same way.

As an additional benefit, building applications on top of distributed storage
systems means that organizations don’t have to post “Our service will be
unavailable tonight from 3–4 for scheduled maintenance” while operators
apply a kernel patch or other critical upgrade to the storage device. There is

26

no single storage device; there is a storage system, with replication and
redundancy.

The promise of modern web services, a globally consistent view of data,
whether for a single user or for a large organization, would be almost impos‐
sible to implement without distributed storage systems. Previously, this
required expensive device-to-device synchronization, essentially copying
disks or directory trees from one specific computer to another; each was a
single point of failure (SPOF).

Fault tolerance forms a key part of reliability; by sharing risk across different
devices, distributed storage systems tolerate faults that storage appliances
cannot. Although storage appliances might have multiple local power mod‐
ules, distributed storage systems have similar power redundancy plus rack-
level power diversity. This further dilutes risk and, when the distributed
storage system uses this diversity to refine data placement, will result in data
storage resilience to many levels of power failure.

SREs responsible for distributed storage systems need to pay attention to dif‐
ferent metrics than they do for a single network-attached storage device. For
example, they will monitor the computed recoverability of discrete chunks of
data. This involves understanding the system’s implementation: how does the
storage system lay out the data, and where does it replicate the constituent
data parts? How often does the system need to recopy data to maintain risk
diversity, an indicator of how accurately it will be able to retrieve data? How
often does the system metadata have a cache miss, causing longer data-
retrieval times?

As distributed storage systems enable applications used around the globe
and with massive quantities of data, they present observability opportunities
for SRE. The rewards of these systems include more durable and available
storage.

Collective Wisdom from the Experts 27

The Role of Cardinality
Charity Majors and
Liz Fong-Jones
Honeycomb.io

In the context of databases, cardinality refers to the uniqueness of data values
contained in a set. Low cardinality means that a column has a lot of duplicate
values in its set. High cardinality means that the column contains a large per‐
centage of completely unique values. A column containing a single value will
always be the lowest possible cardinality. A column containing unique IDs
will always be the highest possible cardinality.

For example, if you had a collection of a hundred million user records, you
can assume that userID numbers will have the highest possible cardinality.
First name and last name will be high cardinality, though lower than userID
because some names repeat. A field like gender would be fairly low cardinal‐
ity, given the nonbinary but finite choices it could have. A field like species
would be the lowest possible cardinality, presuming all of your users are
humans.

Cardinality matters for observability, because high-cardinality information is
the most useful data for debugging or understanding a system. Consider the
usefulness of sorting by fields like user IDs, shopping cart IDs, request IDs,
or myriad other IDs such as instances, container, build number, spans, and
so forth. Being able to query against unique IDs is the best way to pinpoint
individual needles in any given haystack.

Unfortunately, metrics-based tooling systems can only deal with low-
cardinality dimensions at any reasonable scale. Even if you only have merely
hundreds of hosts to compare, with metrics-based systems, you can’t use
hostname as an identifying tag without hitting the limits of your cardinality
key space. These inherent limitations place unintended restrictions on the
ways that data can be interrogated. When debugging with metrics, for every
question you may want to ask of your data, you have to decide—in advance,
before a bug occurs—what you need to inquire about so that its value can be
recorded when that metric is written.

28

That inherent limitation has two big implications. First, if during the course
of investigation you decide that an additional question must be asked to dis‐
cover the source of a potential problem, that cannot be done after the fact.
You must first set up the metrics that might answer that question and wait
for the problem to happen again. Second, because it requires another set of
metrics to answer that additional question, most metrics-based tooling ven‐
dors will charge you for recording that data. Your cost increases linearly with
every new way you decide to interrogate your data to find hidden issues you
could not have possibly predicted in advance.

Conversely, observability tools encourage developers to gather rich telemetry
for every possible event that could occur, passing along the full context of
any given request and storing it for possible use at some point down the line.
Observability tools are specifically designed to query against high cardinality
data. What that means for debugging is that you can interrogate your event
data in any number of arbitrary ways. You can ask new questions that you
did not need to predict in advance and find answers to those questions, or
clues that will lead you to ask the next question. You repeat that pattern again
and again, until you find the needle that you’re looking for in the proverbial
haystack.

Adapted from the upcoming book Observability Engineering, expected in
2021 from O’Reilly.

Collective Wisdom from the Experts 29

Security Is like an Onion
Lucas Fontes
Auth0

Your company is living the dream. You’ve found product–market fit, sales are
growing, and the idea of an IPO or acquisition steadily inches closer to real‐
ity. One day, the leadership team brings in external help to navigate the IPO
process, and the conversation goes like this:

Consultant: Everything is looking great! So tell us, how’s your security story?

Leadership: Well, we haven’t been hacked so I would say it is pretty good!

Consultant: How do you know you haven’t been hacked? What is your
exposure?

Leadership: (stares into the abyss) I will get back to you on that.

As an SRE, one of your goals is to guide security controls and confidently
answer questions related to risk management; but where should you start? I
like the NIST’s CyberSecurity framework of Identify, Protect, Detect,
Respond, and Recover. Use it as is or as a foundation for your own security
journey.

Identify what is crucial to business continuity in terms of systems, data, and
assets. Once identified, evaluate the risk associated with each concern and
any changes required to achieve the desired state by asking questions such as:
What is preventing someone from interacting with our servers at our coloca‐
tion data center? How do we deal with misplaced laptops or phones?

To get started here, you’ll want to familiarize yourself with device encryption
and basic mobile device management (MDM), because it can improve your
security without jeopardizing usability.

Unpleasant cybersecurity events are a fact of life. The protect function is
about limiting or containing the impact when one occurs. The keys are train‐
ing, continuity, and supply chain management. Ensure that everyone goes
through training related to identity management, privileged data manipula‐
tion, and remote access. Document and exercise controls for business

30

continuity and disaster recovery. Finally, implement protective measures for
the code supply chain, such as code scanning and use of third-party licenses.

A good detection system should have layers, raising an alarm each time one
layer fails. The most important property of a detection system is its mean
time to detection, which dictates how quickly you can react to a cybersecur‐
ity incident. The goal is for anomalies and events to be detected and their
potential impact understood. Again, make sure to exercise the detection sys‐
tem manually, validating its accuracy.

“Plans are useless, but planning is indispensable.” How will you respond?
Plan activities related to an imminent or ongoing cybersecurity incident.
How will you determine the blast radius of the attack? What about isolating
the attack’s damage? One often forgotten part is identifying internal and
external communication channels that need to be notified about the inci‐
dent. Remember to consider whether the channels can be compromised as
part of the attack.

Last, recover. Life always moves forward. That means we need to think of
how we come back from cybersecurity incidents. This should include a
reflection on the incident and guide changes to the framework to prevent
similar incidents and increase organizational and customers’ confidence.
Externally, this means a write-up in the form of an incident review for
regaining public trust. Internally, you must review changes made during the
incident and their impact on current playbooks, monitoring, and detection
systems.

Security is a journey and will never be complete. By embracing a security
framework, your team will be able to identify and respond to incidents in a
timely fashion. Constantly learn from previous incidents and reassess your
baseline. The world of cybersecurity is vast and, hopefully, this helped guide
you in this journey!

Collective Wisdom from the Experts 31

Use Your Words
Tanya Reilly
Squarespace

When it comes to reliability, we’re used to discussing new advances in the
field, but one of the most powerful forces for reliability is also one of the old‐
est: the ancient art of writing things down. A culture of documenting our
ideas helps us design, build, and maintain reliable systems. It lets us uncover
misunderstandings before they lead to mistakes, and it can take critical
minutes off outage resolution.

Code is a precise form of communication. A pull-request reviewer can men‐
tally step through a change and evaluate exactly what it does. What they can’t
say, though, is whether it should do that thing. That’s why thorough PR
descriptions are so important. To evaluate whether a change is really safe, a
reviewer needs to understand what the code author is trying to achieve. Our
words need to be precise too.

Words give us a shared reality. They force us to be honest with ourselves. A
system design that felt quite reasonable during whiteboard discussions might
have glaring holes once the author is confronted with describing an actual
migration or deployment plan or admitting their security strategy is “hope
nobody notices us.” An RFC or design document spells out our assumptions.
They let us read each other’s minds.

A culture of writing things down reduces ambiguity and helps us make bet‐
ter decisions. For example, an availability SLO of 99.9% only tells you any‐
thing if you know what the service’s owners consider “available” to mean. If
there’s an accompanying SLO definition document that explains that a one-
second response is considered a success, and you were hoping for 10-
millisecond latencies, you’ll reevaluate whether this back end is the one for
you.

Once decisions are made, lightweight architectural decision records leave a
trail to explain the context in which the decision was made, what trade-offs
the team considered, and why they chose the path they did. Without these
records, future maintainers of systems may be confronted with a Chesterton’s

32

gate: a mysterious component that seems unnecessary but that could be criti‐
cal to reliability.

Writing shortens incidents too. During an outage, written playbooks—docu‐
mentation optimized for reading by a stressed-out person who was just
paged—can remind an on-caller how a system works, where its code lives,
what it depends on, and who should be contacted, saving brain cycles and
valuable minutes for debugging.

For long incidents, incident-state documents can record who’s involved,
which avenues are being explored, and which temporary fixes will need to be
cleaned up, making it much easier to hand over when an on-caller or inci‐
dent commander needs a break. If that information is only stored in one per‐
son’s head, they’ll want to push through tiredness and stay involved in the
incident, even if their senses are dulled and their decisions are no longer the
safest ones. After the incident, written retrospectives help us learn from our
own mistakes and from each other.

Writing takes longer in the short term. It’s definitely easier to start coding
without a written design, to assure yourself that you’ll remember the take‐
aways from an incident, to assume that everyone just understands each
other. But if you take a little extra time to describe what’s happening, using
words, you’ll help other people save time by reading your mind. Even your
own future self may be grateful for the notes you write now.

You can’t do SRE well without investing in a culture of communication.
Writing is good for reliability, the more precise the better. Take time to get
good at it.

Collective Wisdom from the Experts 33

Where to SRE
Fatema Boxwala
Facebook

SREs are a very hot commodity right now; companies need a lot of them,
and there are not that many out there. The first thing to know when choos‐
ing a job: you are valuable. It can give you the confidence that the first offer
you get probably isn’t the only one you’ll have.

However, the first offer you get might be uniquely valuable to you. The deci‐
sion about where to work should be 100% informed by what you need and
value right now. You might need to take the first position you’re offered - for
any number of reasons. I’ve been in that place myself, and that’s perfectly
fine.

When you have the opportunity to decide between positions, it can be hard
to figure out what to do! This is especially true if you are new to the field or
entering from a nontraditional path. To decide, you must know what you
value most in a job and what you can expect from companies.

Does it matter to you what kind of people you work with? Do you prefer to
be on a team that is more social and outgoing, or would you rather keep your
work and social lives separate? Both are totally fine ways to be; you just have
to determine which one you like best.

How much money do I need, and how soon do I need it? Although it’s easy
to calculate which offer is the most valuable, you might have different priori‐
ties. Big cash sign-on bonuses might not be as valuable as stock units that
gain value over time, but you might find a big influx of cash critical right
now. Think about money in terms of your actual needs and not in terms of
the technically most optimal answer.

Sometimes benefits are lumped in with money. They’re part of your compen‐
sation, so it might make sense to think about them in a strictly monetary
fashion. However, it’s best to think about benefits separately. For example,
some health plans might be more monetarily valuable than others, but they
might not include something important to your life, like birth control.

34

If you are working in a country where you are not a citizen, some companies
will be able to offer you better job and immigration security than others.
Larger companies with offices all over the world often have contingency
plans for employees if something goes wrong with their immigration,
whereas smaller startups do not have those resources.

You might care a lot about working somewhere that has a mission and pur‐
pose that align with your moral values. Not working for a company because
it has practices that you morally disagree with—and making it clear that this
is the reason you’re not working there—can be a powerful act.

Thinking critically about how your work will impact the world is a critical
factor when choosing a job. However, just like having any options at all, it’s
also a privilege. It might not be one that you have right now, especially if you
are new to the field or disadvantaged in other ways.

As SREs, we often have the privilege of options. When you spend most of
your waking hours at your job, you owe it to yourself to be informed about
what your options are, and how you can make the most of them. Hopefully,
this guide has helped you start to think about that!

Collective Wisdom from the Experts 35

Dear Future Team
Frances Rees
Google

Don’t get too excited, I’m not looking to move yet, but it’s fun to imagine
what team #4 will be like. There are, of course, the important questions:
What do you work on? How big is the team? Who are the other teams you
work with? And then there are the questions that go beyond the formal
interviews and role descriptions.

Here’s what I hope is true.

I hope you eat lunch together. Maybe not every day, but I hope you can talk
to each other outside of meetings. I hope you can introduce me to all the
teams nearby and point out the one to ask about this tool, that kind of bug,
or the other shared service.

I hope you ask lots of questions. Questions you feel a little awkward about
asking because you think they might be dumb or obvious. Questions about
how things work, why things are the way they are, why you do things the way
you do, what value you’re trying to add with a project. Questions you’re not
even sure have an answer.

I hope you love telling stories as much as I do. Stories of achievements, hard-
learned lessons, or just funny things you’ve discovered. I believe that it’s
important to remember and preserve the tales of the team, to feel connected
to what happened before you joined the team and feel that you can build on
it.

My first team prided ourselves on drawing a map of Maps for anyone who
would listen, with every funny story of how we ended up with dependency
cycles, components with the same name besides an underscore, and how it’s
tedious to expand the name of TDS. The best kind of decorations are white‐
boards that spawn architecture diagrams like weeds that grow richer over
time and draw a crowd of interested onlookers to ask questions.

I hope this makes you the loudest team on the floor, debating new ideas with
vigor, listening to everyone, and disagreeing technically without fighting per‐
sonally. I hope you have big ideas and aren’t afraid to try them. That you

36

believe the way things have been until now doesn’t have to stay forever. I
hope people are excited about what they’re working on and feel proud of the
impact it will have.

I hope you trust that your manager has your back. I hope that they support
you if things don’t go to plan, celebrate if you succeed, suggest ideas if
you’re stuck, find opportunities if you’re bored, and gather help if you’re
overloaded. I hope that if what you really need them to do is simply listen,
without judgment and without offering solutions, that they will.

I hope you’re truly partners with your developers. For a long time, I spent
half my days sitting with one of my developer teams, the web services, and
they quickly stopped worrying that something was broken when I walked up.
I bought a token for their weekly build cop—the day before we found out
their project was moved to another country. Sid the stuffed spider still sits on
my desk to remind me how much we built together.

I hope you have fun with each other as a team and feel comfortable being
yourselves together. After all, that’s what teams are for.

And I hope you like puns.

Regards,

Your future teammate

Collective Wisdom from the Experts 37

Sustainability and
Burnout
Denise Yu
GitHub

Building, running, and being part of an SRE team is a marathon, not a sprint.
Incident response in many organizations is an inherently high-stress situa‐
tion, and repeated out-of-hours escalations can easily contribute to cycles of
professional burnout. As we fine-tune SLOs and iterate on rotation design,
it’s equally important to keep touch on the pulse of the health of the team,
and constantly ask: As a group, are we working in a way that is sustainable
over the long haul?

What does burnout look like? Burnout is, fortunately, a well-studied clinical
condition; doctors like Dr. Herbert Freudenberger, starting in the 1970s,
have researched and characterized burnout as having three telltale signs:

• Emotional exhaustion: too much time spent on caring too much
• Depersonalization: you find yourself empathizing less with others
• Decreased sense of accomplishment

The signs of burnout will of course manifest differently in every individual
and, if you’re an individual like me, who places a lot of pressure on them‐
selves, learning to recognize our own emotional states is not a muscle we’ve
spent much time developing, which makes having high-trust conversations
about our well-being all the more difficult.

A group of technologists and researchers created an online questionnaire
that your team can take to assess risk levels for burnout specifically within
the tech industry.

I learned from a talk by Drs. Emily and Amelia Nagoski that burnout is, in
part, caused by unresolved feedback loops. That deeply resonated with me; I
have worked on many teams where experiments were never concluded,
because we failed to close the needed feedback loops deliberately, which led

38

https://burnoutindex.org

to a state of uncertainty and anxiety about whether we were becoming more
effective.

It would be unacceptable to launch a feature without measurable success cri‐
teria in most healthy product organizations. Similarly, healthy teams should
regularly introspect on how they’re working. The most common tool is to
have regular retrospectives (I’d recommend beginning with a weekly
cadence, then iterating), but many teams also use health checks, such as the
model created by Spotify. Measuring team health will be largely qualitative,
but that doesn’t make it any less important than, say, uptime numbers; you
can only troubleshoot a team that’s burning out if you can catch early warn‐
ing signs.

I’ll close out by briefly touching on psychological safety and its role in creat‐
ing sustainable teams. Extensive research has been performed over the years
to show that psychological safety is a nonnegotiable cornerstone for building
learning organizations. Psychological safety is the set of “perceptions of the
consequences of taking interpersonal risks in a particular context such as a
workplace.”

With greater safety, people are more inclined to provide dissenting feedback
to their teams and try innovative experiments that carry greater risk than
continuing with business as usual. These are important avenues for course
correction, and they’re inaccessible to teams that have a pattern of punishing
anyone who disagrees with the majority or with individuals in positions of
power.

There is no dark art to building sustainable, healthy teams. Teams are unique
organisms; every team will have a slightly different group dynamic, with dif‐
ferent responses to the same stimuli, but there are common traits. Sustaina‐
ble teams have the capacity to learn and improve continuously, which is
critical for building effective SRE organizations. Safe teams have access to a
richer set of indicators for success or failure. These indicators contribute
directly to a team’s ability to close those feedback loops, which in turn, enable
teams to feel productive and healthy.

Collective Wisdom from the Experts 39

Don’t Take Advice from
Graybeards
John Looney
Facebook

Don’t take advice from graybeards just because they seem confident. No one
has any idea where the tech industry is going. Hedge your bets; 90% of pre‐
dictions turn out hilariously wrong. The first career advice I got was, “With
MS-DOS 6.1, the world doesn’t need any more software. Go into hardware.”
The second was, “No one pays for generalists; you need to specialize.” Now
I’m an SRE.

Heinlein told me, “Specialization is for insects.” Try a stint as a software engi‐
neer. Sysadmin. Front end. Back end. Hardware. Product. Bartender.
Founder. Learn something new every birthday.

Burnout is a bitch. It will happen a few times, and each time you think, “I’ll
never fall for that again.” Again, you will work too hard, too long, without
reward or appreciation. It can permanently damage your health. The young
and invincible assume it won’t happen to them. Life is a marathon, not a
sprint.

Maybe you’ll be a manager; maybe you won’t. You could work for a famous
multinational or always be in startups no one heard of. Your stock options
might be worth millions. You might build something that makes you famous
in the eyes of people you respect. Blindboy warned me not to put my “locus
of evaluation” into other people’s hands—even my mother’s. And he wears a
plastic bag on his head.

Mental health isn’t binary. Plomin taught me there are thousands of genetic
mutations that make small differences in what we are good at, how much
stamina we have, and how we are motivated. We need to keep experimenting
to find out what works for us and the ones we care about. Find someone you
respect in every company you work in and ask them to be your mentor. Lis‐
ten to their advice, even if you don’t take it.

40

The more money you have, the more you need. You can read a book under a
nearby tree for $5 and it’ll give you as much pleasure as reading it on a beach
halfway around the planet. You can move to The Valley, do 60-hour weeks,
make senior and 500k a year in five years, but you won’t realize the friends,
your health, and self-respect you’ve lost.

Ensure that you have walkout money so that you can leave bad employers.
Feeling financially trapped makes situations far worse. Dilemmas get easier
when you ask, “In ten years, what will I wish I’d done?” Your current salary
and job dictate the next one. In a boom time, employers have to hire people
who can’t do the job yet, but they almost always meet the challenge. Make
sure you are only 80% sure you can do the jobs you apply for, or you aren’t
stretching yourself. Women should probably apply when they are only 60%
sure, because they’ve been conditioned not to believe how tremendously
competent they are.

We work for managers, not companies. Managers aren’t your friends, they
are your agents. Fire them if you don’t like the community, work, or money
they bring you. Marie Kondo told me there are only two reasons for not let‐
ting go: an attachment to the past or a fear of the future. She’s likely never
needed a VGA cable in an emergency, though.

Don’t build a framework when a shell script will do. Don’t write a shell script
if it’s likely to be in revision control for more than a few weeks. Fred Brooks
told me not to hire coders until I’ve designed the system, but what would he
know? He also recommended two secretaries per programming team.

Don’t take advice from graybeards just because they sound confident.

Collective Wisdom from the Experts 41

Facing That First Page
Andrew Louis
DigitalOcean

In 2017, straight out of college, I started to learn the ropes at a software engi‐
neering gig at Shopify. During the year-long run-up to my first on-call shift, I
spent hours reading the #war-room Slack channel, captivated by the fluency
of that day’s responding engineers as they corralled a terrifying page into a
coordinated, calm, and focused incident response, cutting across multiple
teams.

That first page is no joke. I hope to make it easier for you with some light
structure and tools to help navigate the uncertainty of being paged your first
time.

Consider your emotional response. It felt like the senior engineers had ice run‐
ning through their veins, but the truth of the matter is that everyone gets a
little bit anxious.

If you find yourself there, it’s okay to take a quick moment, take stock of your
nerves, gather yourself, and move forward. Reach out to a colleague if you’re
overwhelmed or find yourself ill-equipped for a particular incident response;
it’s okay to feel this way, but it is important to ask for the help you need in the
interest of navigating to a faster resolution.

Then ask, “What’s hurting right now?” You probably got an alert that
described a dramatic change in some key business metric. You could embark
on several paths with this page, so first, very simply: try to localize what is
affected, not to assess scale or blast radius but, instead, just with your best
effort of mapping the alert to the systems affected. What could make this
challenging is the disconnect between the alerting metric and the systems
themselves that are affected.

Your organizational knowledge of key metrics and the systems behind them
could be leveraged here to support this investigation, which you will build up
as time goes on, but in its absence, you can try to understand what the cross-
organizational alerting correlations are.

42

Here, you can leverage your tooling. For example, getting a high-level view
of the other ongoing pages or alerts being triggered (through Slack searches,
PagerDuty, Bugsnag, etc.) can help you do a reasonable job of identifying the
impacted systems.

Next, whom do you page? After identifying the systems affected, you may
have to figure out whom to page. Although it’s your pager that’s sounding off,
perhaps you’ve narrowed an upstream dependency to be a likely culprit.

Sometimes it’s you, but what if it’s not? It’s easy to find someone to page; the
hard part is the doubt. What if it’s the wrong page? You could be waking up
an engineer in mid-REM sleep, only to have them tell you that you dialed the
wrong number.

You might make the wrong page sometimes. At this point, however, trust the
facts that you’ve accumulated thus far and continue to act quickly. Chances
are, even if the page was incorrect, your due diligence would seem to indicate
that the degrees of separation between the wrong recipient and the right one
are limited.

Above all, remember to savor the moment. Your first page will be terrifying,
but the magic feeling of the transformation—watching a faint alert build up
to a large-scale incident response—will feel like an absolute nerd flex. Every‐
one starts somewhere, and although you might put pressure on yourself to
ace it the first, second, or third time, remember that you’re just building the
neural pathways you need to gain the fluency we all aspire to.

Collective Wisdom from the Experts 43

PART II

Zero to One

SRE, at Any Size, Is
Cultural
Matthew Huxtable
Ziglu

Today’s modern business environments are complex places that move fast
with limited resources in pursuit of continually delivering customer value.
Maintaining reliable systems is an intricate, detail-oriented task that is diffi‐
cult to prioritize in this broader context. Traditionally, the effort required to
build systems while maintaining production uptime has been little under‐
stood, an implicit requirement in the margins, the burden delegated to tech‐
nical teams.

Leaders make this trade-off at their peril. An understanding of expected reli‐
ability and a well-developed risk thermostat are not cutesy optional extras;
today, they are first-class requirements. Although engineers and leaders
understand this, hierarchies and lack of shared context across an organiza‐
tion are a hazard that prevents development of an integrated approach to
building reliable systems.

SRE ushers cultures that recognize these challenges. Through quantitative
means, SRE makes explicit the relationship between operational reliability
and customer happiness. By prioritizing long-term, objective measures of
success, SRE facilitates continual negotiations of reliability whose outcomes
are supported by broader organizational objectives. Done well, it emphasizes
the importance of humans in continually creating the conditions for success,
rather than emphasizing each omission that leads to failure.

For example, although many aspects of SRE adoption are an implementation
detail for each organization, error budgets are considered a basic, immutable
property by which the efficacy of any SRE culture may be judged. Distilling
reliability into a single, easily comprehensible number and radiating this
throughout the organization promotes a shared language of reliability as
a first-class concern. Treating reliability as just another business metric ena‐
bles it to be negotiated and traded where other business requirements take
precedence.

45

However, despite SRE’s deep roots in quantitative analysis, it is ironic that
successful adoption and maintenance of SRE culture remains coupled to the
soft skills of its practitioners. Personal relationships, shared trust, and
eschewing power relationships arising from hierarchy are essential for a suc‐
cessful SRE culture to emerge. Such cultural adoption provides an opportu‐
nity to level the playing field and work together to achieve success—but
embracing these opportunities is key.

We often hear the refrain that faithful adoption of SRE cannot be achieved by
rebadging an existing infrastructure or operations teams. The efforts and
personal sacrifices of engineers are meaningless if they do not resonate at a
strategic level. Likewise, calculated risks leaders take cannot be understood
or quantified without shared language by which to communicate them. It is
for these reasons that a traditional ops team cannot become SRE overnight.
The Space Shuttle Challenger was approved for launch by NASA managers
seeking to avoid delays in an already beleaguered schedule, despite known
engineer concerns about the safety of the orbiter vehicle in subzero launch
temperatures. When engineers engineer and leaders lead in isolated vac‐
uums, introspective behaviors, shared empathy, and mutual trust for each
other cannot flourish.

SRE offers a shared language for leveling the playing field between engineers
and leaders—the quantitative means of prioritizing and integrating the con‐
flicting goals of keeping the lights on with the need to remain competitive
through delivering new functional value to stakeholders and customers.
However, practicing SRE sustainably is fundamentally an organizational
problem, one of effective communication, trust, and autonomy, all of which
are hard to acquire and easy to lose, especially when team bandwidth to
focus on its adoption is limited.

Successful SRE adoption is about so much more than automating your soft‐
ware operations. It’s cultural.

97 Things Every SRE Should Know46

Everyone Is an SRE in a
Small Organization
Matthew Huxtable
Ziglu

“Site reliability engineering is the answer.”

Or so I thought, when I talked myself into my first SRE role in a small soft‐
ware company a few years ago. At last, a mechanism existed that articulated
my work as a software engineer and systems operator—the ultimate excep‐
tion handler of last resort when things go awry. The opportunity to adopt
and implement the same approach for operations as is used by large multina‐
tional organizations ought to be exciting to anyone. However, it became clear
that success would require going off script.

The SRE approach in small organizations is challenging. Resources are con‐
strained, talent acquisition is hard, and the customer base cannot be taken
for granted. The SRE practitioner’s task overwhelmingly combines a multi‐
tude of roles in seeking to do more with less. A technical background in
engineering, systems administration, or operations is unlikely to be suffi‐
cient. Success in SRE requires deep emotional understanding, influence, and
organizational context to advocate for change and foster a blameless engi‐
neering culture. Success in SRE means building a culture that prioritizes user
happiness, an outcome only attainable when operating at the intersection of
technical know-how and human factors.

Contrary to the standard textbook approach, creating a dedicated SRE
resource in these smaller organizations is best achieved by sharing responsi‐
bility broadly. It is challenging for new SRE teams to carve out their own
niche and empower others when success is measured in terms of delivering
features to customers. Reliability is unlikely to be a first-class strategic con‐
cern; it cannot be assumed to be axiomatic and might only arise infrequently
as a matter of inconvenience when blindsided by an unexpected outage.

When each new feature drives measurable growth and increases the utility of
the service, everyone has an incentive to deliver whatever value is necessary
to preserve their future livelihoods, and that’s likely to mean new features.

47

Calibration of the organizational risk thermostat is more ad hoc and impre‐
cise, driven by emotional motivations rather than quantitative judgments.
You may not even need a dedicated focus on reliability; early adopters of a
service will often tolerate relatively poor uptime!

Embracing the idea “you build it, you run it” empowers everyone in your
organization with shared responsibility for reliability and makes broad use of
your team’s skills. In addition, through sharing the pain of running produc‐
tion services, opportunities to develop shared empathy and technical under‐
standing which will be necessary at scale are improved.

Similarly, practitioners implementing SRE must be careful to favor ideas that
promote shared context over centralized control. This example commonly
arises in misguided attempts to aid quality management, such as handing
back a pager in response to perceived excesses in operational toil. Unfortu‐
nately, reprioritizing a priority queue of size one yields no appreciable
change in its order. For SRE at small scale, there is only one production ser‐
vice to support, and there are significant personal and organizational incen‐
tives to continue to offer that support. Favoring shared responsibility and
conversation over additional friction is more likely to be fruitful in the long
run.

Software systems continue to increase in complexity. With broad and evolv‐
ing community support, SRE offers a model for sustainably growing such
systems that is sufficiently flexible for organizations of all sizes. The most
successful implementations understand the importance of sharing responsi‐
bility and reducing friction, all in the pursuit of customer success.

97 Things Every SRE Should Know48

Auditing Your
Environment for
Improvements
Joan O’Callaghan
Udemy

Adopting a SRE (site reliability engineering) mindset doesn’t only start after
your first official SRE project. What can you do with no SRE staff when you
want to make your company more reliable? The first step is to review what
you already have. You need to know your environment better. Audit it and
record the risks. Start with your worst-case scenario. Security breaches, data
loss, and downtime are bad for everyone, but what would destroy your busi‐
ness? Know your kryptonite and focus on that first.

Next, move on to capacity. If you don’t know your limits, you can’t keep safe
or plan your growth. Determine whether you have any capacity issues. How
much headroom do you have, if any? What is the lead time to get more of
anything? Dig into whether you have peak traffic or usage patterns.

Another important area is security. At a fast-moving organization, unfortu‐
nately, this can be overlooked until it becomes a problem. Who has access to
what, and when people leave, are they properly off-boarded? Do you have a
password manager, and have you turned on audit logs for your cloud
accounts? How many people can destroy your company?

With infrastructure needs, you want to think about backups. Start by making
a fast infrastructure diagram—just whiteboard it and take a photo. Is there
one of anything? Is it all reproducible? Practice reproducing parts of it dur‐
ing nonemergency times, document the process, and always remember to
test your backups.

Next, consider third parties that your business relies on, such as hosting pro‐
viders, DNS, and security. Go through your billing/invoices to make sure you
know about all the third parties you use for engineering-related services.
Build a list and, in some cases, consider redundant/backup links. Do you
have details (such as support number and account number) for each of them

49

on a wiki? Update the contact details with these companies to ensure that
they email to a list of people rather than just to one person in your company.

Another area that is very easy to forget about is domains and SSL certs. That
can cause a huge amount of damage to your business if neglected. Do you
know all the domains critical to your business? Do you have logons to all the
domain registrars you use? How do you notify about expirations? Even set‐
ting up a calendar reminder is better than nothing. Last, document your
update procedures—it is possible to have five certs all with different update
requirements, so make sure they are documented. If you have a renewal
cadence of three years, chances are that some knowledge has been lost.

After you complete your review, choose some tasks. You want to make the
maximum amount of improvement but in a limited amount of time. Time‐
box your efforts and start off with two hours a week to allow for small but
steady progress. Make sure your boss is okay with your time being spent on
this. Don’t get overwhelmed by the massive amount of work to be done. Do
not try to take on another full-time job. You risk burnout and reduce the
likelihood that your company will provide you with more SRE resources.
Why hire someone else if you are doing this work too?

You can’t fix it all. It is just not possible, even with a full team of SREs! We’re
not aiming for perfection; we’re just looking for better. You’re adding SRE to
your company one task at a time and making things better. Just keep going,
and good luck! Don’t stress. Things will always break; it is a normal part of
engineering. This is not your main job, and even if you get the green light to
reduce some of your other tasks, it is just not possible to fix it all, even with a
full team of SRE engineers!

You are adding SRE to your company one task at a time and making things
better. Just keep going, and good luck!

97 Things Every SRE Should Know50

With Incident Response,
Start Small
Thai Wood
Resilience Roundup

There’s a good chance that your incident response plan looks something like
the following:

1. Someone gets paged (possibly you!)
2. ???
3. Fix it

That’s the plan that develops in many cases on its own. As your organization
and systems grow—in the number of people that operate it, the number of
people it serves, or its complexity—that plan no longer fits. As part of an SRE
or Ops team, you can watch for some of these signs:

• You’re unsure how to start an incident.
• You don’t know how or when to get more people involved.
• You don’t know whether to start a call or conference bridge or use chat.
• There’s no consistent way to notify people who might be affected by the

incident.
• When battling the incident, it’s unclear who is doing what.

An incident by its very nature is a surprising event, a cognitively difficult
task. Not being able to answer these questions introduces further uncertainty
to an incident and can be incredibly costly. Instead of trying to investigate
and solve the mystery of the incident directly, responders are trying to
answer those questions by figuring out how to coordinate from scratch
instead of attacking the problem. The results are split focus by the respond‐
ers and longer downtimes.

Taking steps to change this pattern can be difficult. It can feel impossible to
find the time or space to learn or make a new plan, especially if many

51

incidents have occurred lately. Fortunately, it’s possible to start small. How do
you move from flying by the seat of your pants to operating within a frame‐
work? Take small steps, with the understanding that when dealing with com‐
plex, unpredictable things, the plan can’t specify everything. You will never
know what kind of incident might occur, because you can’t predict the future,
so investing in an incident response framework helps shift focus away from
many of the little decisions that need to be made in the moment toward the
mystery of the incident itself.

After working with many teams in all sorts of organizations, I’ve found that a
pretty good starting point is to think in terms of three roles: incident man‐
ager, expert/operator, and communications. If you’re the one who is paged,
you’re wearing all those hats at the moment you answer. Anytime you don’t
have someone to fill that role, you fill it. Except for incident manager, you
can have any number of the other roles that makes sense; usually, this only
applies to the expert/operator role, but some folks like to split internal and
external communications.

Once you have someone else in the expert/operator role, your focus should
shift primarily to keeping track of what is going on. Know that that is a lot to
ask of one person, especially if they’re still taking on multiple roles. You’ll be
focusing on things such as who is doing what, whether the response seems
stuck, and who might need replacing due to fatigue.

I’ll admit that working this way takes practice. I recommend that teams prac‐
tice together without much technology involved, such as by using some tab‐
letop exercises. It’s also something you can practice mentally as you are on
call. Continue to ask yourself, “What role am I operating in now?”

The most important part about an incident response framework is that it
exists. It needs to exist out of one person’s head. It needs to exist in a form
that can be seen by others and practiced. Soon enough, small steps will lead
to big results.

97 Things Every SRE Should Know52

Solo SRE: Effecting
Large-Scale Change as a
Single Individual
Ashley Poole
Boomin

Being a solo SRE in an organization typically comes about through one of
two paths: you already have past SRE experience and you’re joining the orga‐
nization as its first SRE hire, or you’re an engineer within your existing orga‐
nization and you’ve seen how introducing an SRE culture and practice could
improve pain points and ultimately improve your product life cycle.

As a solo SRE, it might seem daunting at first to see a possibly endless list of
pain points that need solving. Often this includes recurring production out‐
ages, possibly even from a handful of common root causes. Can you really
effect that change on the scale needed? Yes!

When deciding what to tackle first, review the most common or most
impactful pain points and find a small area where you can make the most
impact, given your likely limited available time between fighting fires. Often,
some of the biggest wins include lack of observability, unstructured incident
management, or inadequate testing and release procedures.

Without observability, how do you determine how your product (that is, ser‐
vice) is performing, its health, or your users’ happiness?! Improving observa‐
bility could be anything from implementing logging, adding appropriate
logging context, adding or configuring monitoring, exposing metrics, or
adding request tracing so that you can help debug failures when things go
wrong because, let’s face it, they will.

Incident management is a natural progress after observability, because you
must first be able to detect an incident before you can manage it. Incident
management focuses on how the incident is managed in a well-defined, clear,
and structured process and supports documentation such as in runbooks,
which provide detailed instructions on how to service a failure service.

53

Your incident management process should set out expectations and roles for
managing an incident as well as the responsibilities of those roles. Typically,
incident management roles include an incident commander, technical lead,
and communications lead, although the size of the incident and the organi‐
zation compliance requirements will often determine whether a single per‐
son handles all roles during an incident or different people handle them.

Inadequate testing and release procedures can often both be a source of inci‐
dents and prolong them unnecessarily when they occur. This is commonly
caused by the lack of repeatability in procedures that typically involve heavily
manual processes that can be error prone and slow to complete. Seeking
opportunities that could benefit from automation is a great way to improve
repeatability and reduce your cycle time for those operations.

By starting out small and getting some quick wins under your belt, you’ll be
able to demonstrate the positive benefits of SRE through incremental change
and reduce daily toil for yourself or other engineers.

Demonstrating this positive change and involving others in the process is an
important step to growing your SRE culture, and you’ll soon notice that an
increasing number of engineers will show a willingness to learn and embrace
the SRE culture you’re trying to build.

The most important point to remember in being a solo SRE is that although
you can effect change within your organization, you cannot do it alone, so
don’t try to carry the weight of your organization’s problems only on your
own shoulders. The worst thing you could do for yourself and the organiza‐
tion is to try to take all that on yourself. In some extreme circumstances, this
could lead to burnout. Your mental health is important. Remember that!

97 Things Every SRE Should Know54

Design Goals for SLO
Measurement
Ben Sigelman
LightStep

When designing for SLO measurement, consider the goals of flexibility, tes‐
tability, freshness, cost, reliability, and organizational constraints. Let me
explain how to use them. You want flexible targets. That is, SLOs must be
able to evolve over time. Sometimes this is simply to adjust an error budget
to allow for more releases and faster product iteration.

Operators should be able to adjust the heuristics embedded in the SLIs, (for
example, 25 ms [milliseconds] to 30 ms), success thresholds (95% of the time
to 97% of the time), aggregation windows (over the past 30 seconds to over
the past 7 days), and more, all without making code changes, redeploying
software, or pushing new production configuration. The SLO performance
history before and after the target revision should also be retained, with
some way to see how each target has changed over time.

Next, consider testable targets. When adding a new SLO, we need both an
SLI and an objective, or target. Crafting appropriate targets is often subtle
and challenging. What’s the right error budget, given our reliability history?
Percentile of latency to measure? Actual latency threshold? And, given our
goal of flexible SLO targets, any time an SLO needs updating, these should all
be reconsidered. To feel confident about our SLOs, backtest possible targets
against historical data, especially when SLOs are involved in alerting—and
estimate alert frequency when setting a threshold.

Freshness is a measure of the time it takes for an SLO to reflect real-time data
in production. Lower time deltas are better as far as freshness is concerned,
but the actual freshness requirements depend on the particular SLO.

Certain SLOs might only be used for monthly managerial reports, where it’s
immaterial whether the SLO incorporates data from the most recent 30 sec‐
onds. In other situations, SLOs are the first line of defense for business-
critical production firefighting; then, freshness should be measured in
seconds and data processing delays kept to a minimum.

55

Cost must be a design consideration, too. Implementing flexible, testable,
fresh SLOs is much easier with an infinite budget, but the data-engineering
requirements for effective organization-wide SLOs can be significant, espe‐
cially for high-throughput or widely distributed applications. It’s neither nec‐
essary nor realistic to estimate costs to multiple decimal places, but it should
be possible to get within a factor of 10 by thinking ahead along three axes:
time series data, structured logging data, and opportunity cost.

Just as individual services have SLOs, the SLO infrastructure must have SLOs
of its own! Implement SLOs on top of or within existing high-availability
observability components. Sometimes, though, SLOs are implemented
through rickety scripts or poorly monitored cron jobs, introducing risk and
unreliability. If you need to build net-new infrastructure to implement cer‐
tain high-priority SLOs, so be it—but plan ahead and allocate time to make
that net-new infrastructure highly available. SLO infrastructure must be
among the most reliable software your organization runs in production.

Finally, organizations often bring constraints beyond any technical or budg‐
etary considerations. For instance, it’s still common for organizations in cer‐
tain highly regulated industries to require all operational data to stay on
premises, in physical data centers, or within the organization’s VPC (virtual
private cloud). In other cases, an organization will fight data silos by requir‐
ing all durable time series data or all structured logging data to reside within
a particular database or with a particular vendor.

The goals outlined here aren’t exhaustive, but your SLO implementation will
be all the better for having considered and accounted for them! Remember
this is just a model; you must do what works best for you, your systems, and
your users.

Adapted from the book Implementing Service Level Objectives: A Practical
Guide to SLIs, SLOs, and Error Budgets (O’Reilly).

97 Things Every SRE Should Know56

https://oreil.ly/kAVJt
https://oreil.ly/kAVJt

I Have an Error Budget—
Now What?
Alex Hidalgo
Nobl9

SLIs, SLOs, and error budgets are the bedrock of site reliability engineering.
Much has been written about what they are, but not much has been written
about how to use them. The classic example of, “Ship features when you have
an error budget; halt releases and focus on reliability when you don’t,” is a bit
archaic and doesn’t really expose all of the great decisions you can make with
your data.

So if it’s not just about shipping features or not, what can we use error budget
data for?

Well, I would be remiss if I didn’t mention that you can, in fact, use error
budgets to determine when to release new features. Changes to code or con‐
figuration are the single most common vector of new problems, so some‐
times it actually is completely reasonable to say, “Let’s slow down a little bit
and figure out how to make things more stable.” But let’s spend some time
talking about what other decisions you can make, using error budget data.

A more reasonable use of error budget data is to determine the focus of your
project work. SLO-based approaches to reliability are about providing you
with better data to have better discussions and make better decisions. Having
a hard mandate about when to ship code probably doesn’t make much sense
in many situations, but using this data to help you figure out what your team
should be focused on does make a lot of sense! You don’t have to halt your
release pipeline to be able to say, “We’ve been unreliable more than we’ve
aimed to be—maybe for this next sprint, half the team focuses on fixing that
instead of on feature work.”

You can also use your error budget status to figure out when to experiment.
You learn about systems when changes are introduced, so introduce changes
on purpose to see how your service reacts! This could be anything from
chaos engineering to performing failover exercises or even something like
experimenting with a new algorithm or garbage collection method. Use your

57

error budgets to figure out the right times to perform these experiments; if
you’ve been too unreliable recently, perhaps it makes sense to hold off, but if
you have lots of error budget remaining, do what you want!

Something a little bit scarier is just purposely burning your excess budget. If
other services rely on yours, you need to make sure you’re not being more
reliable than you advertise. Turn your service off on purpose so teams that
depend on your service can learn about how their service performs when
you’re not being reliable.

Finally, you can also just do nothing at all! If you have tons of error budget
remaining, maybe you just leave things that way because your team has other
urgent priorities. If you’ve burned through your budget even several times
over, it might be the case that you’re waiting for a shipment of new hardware
to help fix things or perhaps you experienced a black swan event and there
isn’t a reasonable pivot to reliability work to make.

The point is that error budgets are about providing you with better data to
make better decisions. If you have a meaningful SLI and a reasonable SLO,
your error budget data helps you think about how you’ve been performing to
user expectations and requirements over time. Use this data in whatever way
makes the most sense for you.

97 Things Every SRE Should Know58

How to Change Things
Joan O’Callaghan
Udemy

As an SRE, you might be trying to push through an initiative that you know
is for the good of the company but cannot get it done without buy-in or
effort from other teams—and right now, you’re not getting either.

“While in theory we support you, we don’t have the bandwidth to facilitate.
Maybe next quarter.”

“That change is unnecessary, it’s fine as it is.”

How can you push this change through? First, this change must be worth it
to you. Do not go to all this effort for something you are ambivalent about. It
must also have big-picture improvements, and the timing must work.

If you can’t convince your manager that this change is worth it, stop now and
pick another battle. It won’t happen soon. Back down with grace and revisit it
in six months or whenever anything happens that decreases the resistance.
Your manager is constantly assessing employee time versus task value, so
respect their decision.

Next step: go up. You and your manager need to have a meeting with the
level above your manager, such as with your director.

• Explain why you want to do this now.
• List the benefits, risks, and probabilities of the change.
• Be ready to discuss impacts.
• Be ready to compromise.
• Discuss why other teams will protest.
• List risks if we don’t make this change.
• Have a testing and deployment plan.
• Have rollback steps.

59

If they agree with the sentiment that this is a good thing to do and it’s worth
doing, discuss organizational resistance. The resistance could come from the
peers of this director or from the staff of their peers.

Go up or sideways? At this point, your director might share the plan with
their peers. However, if your director thinks that resistance from some other
directors might be very difficult to shift, you can go up again. The project
may need an executive sponsor, such as the VP (vice president) or CTO
(Chief Technology Officer) level.

Your manager or director argues the case. They don’t sugarcoat the issues
and discuss the plan to deal with them. An engineering executive is unlikely
to sponsor a project that starts a turf war and negatively impacts intra-
engineering relationships.

If the change is worth it, the timing is right, you’ve shown enough forward
planning, and the moons are aligned, congratulations, you’ve obtained their
sponsorship.

What now? You go back down a level again. Your director has a meeting with
the other directors, where they share the plan and the top-level sponsor says,
“Yup, this is gonna happen.” The outcome of this meeting should mean that
the other engineering directors are reassured that you and your team will do
your utmost to make it as easy as possible but also understand that the
change is inevitable, so they might as well just go with it.

Show empathy for the impacted teams from the very beginning. You have to
make it as easy as possible for everyone to do this. Schedule meetings at
times convenient for the relevant teams, and you can hear their fears and
pain points. Respect their concerns and brainstorm ways to mitigate obsta‐
cles. Build a deployment plan that works with their schedule.

Think through how you’ll communicate the change to the organization.
Before the change happens, give a presentation to engineering because it will
help alleviate concerns, aid maintaining project momentum, and reduce
resistance to requests for help during the project.

Make this a project that lifts everyone up, and they might let you do some‐
thing similar again!

97 Things Every SRE Should Know60

Methodological
Debugging
Avishai Ish-Shalom and
Nati Cohen
ScyllaDB
Here Technologies

SREs often debug in production—under stress and flooded with informa‐
tion. Debugging can seem like a mysterious, innate trait, but luckily this is
untrue; rather, you can follow a structured methodological process to pin‐
point the problem, avoiding mistakes and cognitive biases.

1. Triage: In dealing with an incident, we first must make some meta-
decisions quickly: What’s the business impact? Are we handling this
incident now or can it be deferred? Do we have time to debug it or
should we employ an emergency failover procedure? Many of the
answers are unknown before you begin debugging. Triage is a short
phase to answer these questions quickly, before launching into a possibly
long debugging process. However, you can go back to it at any point:
think of triage as a fail-fast step to return to any time you have more
data.

2. Operational definition: To solve an issue we decide is worth pursuing, we
need to define it precisely and measurably (“it’s slow” doesn’t cut it). An
operational definition has two main parts: a method of measurement
(i.e., From where? With which tools? When? In which environment?)
and an expected result of that measurement (e.g., “p99 of transaction X
is consistently over 500 ms since 1 hour ago, should be under 100 ms”).
This allows us to collaborate and verify that we have indeed solved the
issue we are handling.

3. Making the mental model of the system explicit: That we don’t immedi‐
ately know what broke down is a strong indication that our mental
model of the system is incomplete, if not misleading. Our mission is to
refine this model incrementally until it is close enough to reality to
explain the problem. Write down the model as a diagram or text. (Use
whatever is comfortable for you.) You may be tempted to skip this; don’t!
Writing forces you to articulate your model, which helps find gaps and,

61

more important, makes your assumptions clear so you can iterate on
them.

4. Iterating on the model: Once we have an explicit model, we can improve
it iteratively until the problem is found—not very different from the sci‐
entific method: formulate a hypothesis, define what data is needed to
corroborate or reject the hypothesis, collect this data, and evaluate it to
decide whether the hypothesis should be rejected. Remember, our meas‐
urements could be wrong, we may be sidetracked by various cognitive
biases, or we might simply be subject to the limits of reductionist
thinking.

5. Reconstructing and validating: The reconstruction phase is basically the
reverse of the analysis we do when we create a hypothesis about our
model. Instead of breaking the system down to parts and subsystems, we
reconstruct the system from our assumed parts, using the measurements
we have, and ask whether the sum of the parts explains the system we
are seeing—often it does not. We could be missing a part, or perhaps the
faults we found in one of the parts are not relevant to this incident
(things are always failing somewhere!). It could also be the interaction
between parts that explains what we are experiencing and not any single
part.

6. Next steps: The core idea for methodological debugging is to make our
mental model explicit to become aware of deviations between our model
and reality. With any methodology, mastering it requires practice and
training, such as using game days to train and improve your mental
model of the system. To learn more, check out our SREcon 2018 debug‐
ging workshop.

97 Things Every SRE Should Know62

https://oreil.ly/jl_vM
https://oreil.ly/jl_vM
https://oreil.ly/X430o

How Startups Can Build
an SRE Mindset
Tamara Miner
Improbable Games

At startups, SRE is often an afterthought behind shiny new features.

This could be because product or market fit is higher priority, or service level
objectives (SLOs) aren’t clearly aligned with customers’ needs. Yet ignoring
SRE means missing part of the puzzle. SRE is about being customer-focused
—really understanding the experience and pain of using your product in the
same ways that your customers will. It can (and should) be a mindset that is
present in everyone at your company.

So how can you do this? Implement a way to know and measure what your
customers care about—not just features but how those features perform.
Having a well-defined set of engineering principles and release gates helps
standardize production readiness across the company in terms of product
experience—just ensure that your engineering teams go beyond aspirational
feelings. Such principles set service-level expectations across the organiza‐
tion for features and products at different stages of development.

Imagine if marketing and sales understood the impact of reliability and were
empowered to set product roadmap expectations properly for customers! For
example, if you are adding webhooks to your service, the initial release could
be as beta. Release gates for beta features might be: support ten thousand
customers, SLO metrics live on internal dashboards, and rate limits are set
much lower than in production features. Without much interdepartmental
communication overhead, the commercial teams already have what they
need for customer communication.

The key to all this is bringing commercial teams along throughout the soft‐
ware development life cycle so that everyone has the right expectations and
can be proactive about scale expectations, prioritization, and roadmap set‐
ting. Regardless of the stage of development, it is critical to understand
the bottlenecks in your system and communicate them to stakeholders.
Doing this properly should prevent your sales and marketing teams from

63

over-promising to customers and facilitate continued communication
between the engineers who know the systems, and the commercial teams
who engage with customers should minimize the number of surprises when
onboarding large new customers.

How do you make this happen? Make the process as self-serve as possible by
internally publishing your value-based roadmap with a clear update cadence,
so that any stakeholder can look up the next biggest challenge and raise red
flags as needed. Increase engagement by having a sort of cross-departmental
scrum-of-scrums to manage expectations, maximize the feeling of shared
ownership (e.g., error budgets), and enable commercial teams to inform and
advise on big, potential opportunities in the business’s best interest.

There is likely to be a strong push to ignore SRE capability work and focus
on new features, but this is when you point to those engineering and product
principles and release gates to say, “Customers can live without a feature they
haven’t bought, even if they want it. They can’t live without something that
they bought and expected to work. Go down that path and they’re likely to
churn.” Watch out for organizational assumptions about product reliability,
scalability, and observability. To mitigate, use Kano models to demonstrate
trade-offs in customer satisfaction between features and SRE concepts.
(Note: demand forecasting can also be a powerful tool to help the business
scale appropriately.)

To build a customer-focused product experience, bring business stakeholders
to consensus on value-based outcomes (e.g., happy customers who promote
your super-reliable brand). Help them understand how production readiness
affects brand reputation and requires participation from all corners of the
business. Don’t fight the product; bring it along in the journey to establish an
SRE mindset.

97 Things Every SRE Should Know64

Bootstrapping SRE in
Enterprises
Vanessa Yiu

Before embarking on bootstrapping SRE in large enterprises, it is essential to
understand the key problems your organization needs to solve, and identify
areas where SRE will have the most impact. These should be the primary
drivers for your business case, and key deliverables on your roadmap.
Broadly speaking, larger organizations tend to suffer more from runtime
inefficiencies due to scale. Investing in SRE reduces operational overhead
(and hence budget) on running production, and a common incentive is
increasing developer productivity and cycles spent on driving strategic
change.

However, how this problem manifests itself is much more nuanced. For
example, services with higher service level maturity likely have well-
established operational practices in place already but perhaps more instabil‐
ity due to usage growth (i.e., capacity constraints) and increasing complexity
over time compared to newer services. Know that there is no one size fits all
when it comes to implementation. Take the time to do research; interview
product managers and on-call engineers to understand common challenges
and leverage data sets (e.g., problem management database, incident post‐
mortems) where available to confirm trends and remove recency bias.

Once you can articulate a clear business case for SRE, securing sponsorship
at the executive level sets the right level of focus for implementation. Stake‐
holder buy-in from other tech leads and managers is crucial to build partner‐
ship and scale across the organization. Standalone systems are rare in
enterprises—the service you operate will probably depend on a range of
other upstream and downstream services, so your success is directly correla‐
ted with your ability to navigate, influence, and deliver across the organiza‐
tion. Define clear roles and responsibilities for your stakeholders, as well as
what they can expect from SRE for every engagement. To manage expecta‐
tions, agree on a common set of measurable goals and deliverables each

65

quarter. Check in regularly on progress, more frequently (e.g., weekly) at the
start of any engagement until things reach steady state.

Textbook implementations of SRE rarely translate well in enterprises, given
the diversity of businesses, products, and services and the complexity of
organizational structures, environments, and systems that have grown
organically over time. However, for most enterprises, introducing SLOs and
error budgets to business-critical services remains a key differentiator for
establishing SRE, so likely a core part of any implementation roadmap. If
SLOs are not a status quo in your organization, be prepared to invest a sig‐
nificant amount of time in teaching stakeholders about the importance of
SLOs and how to instrument meaningful ones as a step toward establishing
this as common language across the organization.

At the outset, focus on solving a few key issues where SRE can demonstrate
the most impact in the short term. These early successes build trust with the
stakeholders mentioned earlier, demonstrate how SRE adds value to those
unfamiliar with the discipline, help secure sustained investment, and ulti‐
mately increase your likelihood of success in the long run. Build on this
incrementally by driving strategic change programs in parallel.

Be thoughtful about how to measure return on investment over time—pro‐
gress, results, and success criteria for any engagement should always be
quantifiable. These can take many forms, from SLO improvements, toil work
measurement reduction, and achieving OKRs (objectives and key results),
through to client satisfaction surveys. In addition, solicit open and honest
feedback from stakeholders regularly. These are all powerful mechanisms to
refine your approach and iterate plans based on what is working well or not
for the organization.

Building a successful team in any large enterprise is no easy feat—and even
more so for disciplines like SRE, where success depends on major cultural
changes across the organization in addition to technical delivery. But it is
possible!

97 Things Every SRE Should Know66

It’s Okay Not to Know,
and It’s Okay to Be
Wrong
Todd Palino
LinkedIn

At LinkedIn, one of our core values is “Take intelligent risks.”

At the heart of this is that we will be wrong sometimes, but as long as we go
into our decisions with the best information available at the time, it is not
just okay to fail, it’s required to happen from time to time. If we never fail, we
are not pushing ourselves far enough. A corollary is that it is impossible to
learn if we do not first accept that we don’t know everything.

Let’s tackle first the unfortunate pressure on people to feel like they have all
the answers. All too often in meetings we see someone tap dancing nervously
around an answer that they don’t have—which often happens when asked a
question by someone higher up the management chain. We’ve all been there,
afraid to look underprepared or inadequate.

It invariably results in one of two outcomes. The questioner can request the
person to find the answer and follow up later, which encourages the behavior
we want to see and makes it okay not to know. A worse alternative is if they
just accept the given answer as correct, which frequently ends up propagat‐
ing bad information that might be found out later.

Why can’t someone just flat out say they don’t have the answer? Because they
feel those present will often lose confidence in the person answering this
honestly. But what exactly is wrong with not knowing an answer?

Upon reflection, I think we have forgotten that it is not our role as engineers
and leaders always to have the answers. It is far more important to know how
to find the answers than it is to have them ready at hand. An answer of, “I
don’t know, but I will find out and get back to you,” demonstrates that you
can be trusted to provide an informed view. It means that when you do have
an answer at hand, it’s not because you made it up on the spot.

67

Now, what happens if you answer incorrectly? A culture where being able to
say “I don’t know,” I believe, actually normalizes the ability to be wrong. If
you were wrong because you made the first answer up and were scared to
admit you didn’t know, and then someone else points out the flaw later, you
lose credibility over time.

However, if you were wrong because you answered with the best informa‐
tion available at the time, but have prefaced that you don’t know, then you
are known to always give informed answers and not provide an answer you
don’t have information for—you show that you can learn and grow as a
technologist.

I have worked in companies where it was not okay to be wrong or not have
the answers. Places where politics were far more prevalent. The difference is
in another of LinkedIn’s values, “Be open, honest, and constructive.” Culti‐
vating an open culture, one in which we do not assign blame but instead seek
to understand, means that we can be vulnerable with each other with the
understanding that it will not be used against us later.

Our industry frequently talks about blameless retrospectives, but it’s critical
to bring that to all aspects of our work. When we or our colleagues fall, we
need to help each other back up and move forward together with the knowl‐
edge we have gained. Growth means risk, and risk means sometimes we are
wrong. Otherwise, we stagnate.

97 Things Every SRE Should Know68

Storytelling Is a
Superpower
Anita Clarke
Shopify

Upon learning my job title would be Engineering Storyteller, I knew I was
jumping into some Silicon Valley realness (even though I was in Toronto). It
was the Valleyest of titles I’d ever heard—and I’ve heard some hilarious ones
over the years. I chuckled when I told people; wouldn’t you? Only after my
first story was published did I understand that the title was a brilliant distilla‐
tion of my role.

So what is an engineering storyteller? Storytelling is a tradition passed down
through the millennia, and it has survived because we are built to consume,
create, and process the world through stories. Part of my role is to help SREs
create smart and engaging technical stories and to find a home for them,
whether they are written down in blog posts or told orally through presenta‐
tions and podcasts.

When I do my job well, something unlocks in the world, and an explosion of
excitement pours out from the sharing of information. I’m no longer sur‐
prised by the reaction. After all, great storytelling is a superpower that shows
you’re engaged and passionate about the work you’re doing. It shows you
have empathy for your peers and want to make collaboration and learning
easier. Most important, it shows that not only do you want to share your
ideas; you want people to understand them also.

A common misconception exists that working in a technical field means that
you won’t need to interact with people or develop so-called soft skills. I
bought into it too when I first got into software development, thinking I
could deal with machines all day. My first couple of jobs drove home that
that belief was a fallacy.

I realized the commonalities with my former life as an athlete: teams that
communicate clearly, quickly, and effectively are superior to those of other‐
wise equal skills. A star player on a team is only able to be a star through the

69

support and alignment with the rest of the team, and so it goes for the team
at work.

Storytelling especially matters in SRE because the work that’s being done can
seem mystical to other teams. How exactly are you diagnosing the system,
and what exactly is happening? You have to be able to share in a way that
makes sense for other teams. Storytelling brings a greater depth of knowl‐
edge to your work and, hopefully, new insights and ideas.

To unlock this power, you must practice, practice, practice. Writing and
crafting narratives about your ideas takes time and lots of iterations. The skill
of writing is built, not born. It isn’t just about the words you’re using; it’s
about breaking down complex topics in a way your audience understands.

Here’s how you can intentionally be a great storyteller:

Be clear and concise
Use accessible language and be direct.

Be detailed
Brevity isn’t always your friend; your decisions and process are as impor‐
tant as the results.

Show your receipts
Back up your claims with proof, but don’t editorialize the results.

Be helpful
It’s about the reader, not an ego trip.

Speak the reader’s language
Ideas need to be understood, so share in a way best suited to your
audience.

Storytelling has a home with SRE, especially given the stories you share
about memorable outages and incidents, but you can use it beyond recalling
horror and hero stories. Storytelling perfects communication skills, estab‐
lishes expertise, creates essential professional networking opportunities,
helps solve problems, and increases confidence. It’s a superpower, but one
you can manifest.

97 Things Every SRE Should Know70

Get Your Work
Recognized: Write a Brag
Document
Julia Evans and
Karla Burnett
Wizard Zines
Stripe

There’s this idea that if you do great work at your job, people will automati‐
cally recognize that and reward you with promotions and increased pay. This
isn’t always true! Your manager certainly doesn’t remember everything
important you did, and if you reflect on it, even you probably don’t remem‐
ber everything you’ve done in the past year.

Here’s a simple tactic that can help you get your work recognized: write a
document listing your accomplishments. Instead of trying to remember it all,
maintain your brag document, which lists everything so you can refer to it
when you get to performance review season!

Here’s an example structure:

• Goals for this year (Have you been really focused on security? On build‐
ing a culture of code review on your team?)

• Goals for next year
• Projects (Explain your contributions and their impact to your company.

Numbers are good!)
• Mentoring and leadership work (Include community building and glue

work.)
• Design and documentation (Keep design docs and documentation you

wrote!)
• What you learned
• Outside of work (Talks! Blog posts!)

This document can be quite comprehensive if you want; 10 bulleted pages
for a year of work isn’t too much, especially with graphs or screenshots. You

71

can write it all at once or update a running list weekly; just keep it structured
so that a reader can find what they’re looking for easily.

Stick to the facts. When we came up with this idea at Stripe, we called it a
brag document because many people feel uncomfortable talking about the
work they’ve done, even if it’s excellent. (“It feels like bragging!”) If that
sounds like you, it’s okay to write down your accomplishments, even if it’s a
little uncomfortable at first.

Don’t try to make your work sound better than it is, though; just make it
sound exactly as good as it is, for example, “was the primary contributor to X
new feature that’s now used by 60% of our customers and has gotten Y posi‐
tive feedback.” Where possible, link out to sources for how you came up with
a number; it’s hard to argue with facts!

Share your brag document. You might feel self-conscious at first, sharing your
brag document with your manager. But every single manager we’ve spoken
to LOVES when their reports share a brag document with them. It makes
writing your performance review way easier and it means they have all the
facts on hand when they’re advocating for you to be promoted. Brag docu‐
ments also really help with manager transitions, for example, if you get a new
manager 3 months before a performance review cycle.

Similarly, share your brag document with your coworkers! If they’re writing
peer feedback for you at performance time, having a list of what you’ve
worked on and your goals makes it much easier to see the areas you want
feedback on. Outside of performance time, sharing your doc helps your
peers understand what you’re aiming for and how they can help. We’ve got‐
ten offers for introductions to conference organizers and suggestions for
project ideas after writing down related goals.

Look for patterns. Brag documents also help you reflect on the work you’ve
done. Reading over them can help you understand what work you feel proud
of, what you wish you were doing more or less of, what you could do better
next time, and the longer-term impact of projects you worked on years ago.

They help others too: when you do get promoted, you can share your histori‐
cal brag documents with people you’re mentoring, to explain the path you
took and make that promotion seem more attainable for the next person.

97 Things Every SRE Should Know72

PART III

One to Ten

1 REPL stands for read-eval-print-loop, an interactive environment.

Making Work Visible
Lorin Hochstein
Netflix

Wait a second. . .you used a REPL1 to figure it out?

I was taking notes for a colleague who was interviewing an engineer after an
incident. One particular service had gotten stuck, and the engineer was dis‐
cussing how they figured out what the problem was. Before that moment, I
had no idea that we supported launching a REPL on a production box to
interrogate the state of that service.

Most of the work that we do is invisible to others; they see the results, but not
how we got there. Even during an incident, where we’re working in close col‐
laboration with others, our peers rarely have the opportunity to observe
exactly what we’re doing. They don’t see which queries we’re running, which
graphs or logs we’re looking at, how we interpret these results, and how we
decide where to look next.

There is enormous value in making this work visible: in providing coworkers
with a window into the messy details of our day-to-day work.

In order to address the problems people encounter in our organizations, we
need to understand what those problems are: an operational tool has an
error-prone user interface, or a team with a high workload that requires
them to constantly context switch.

Nobody in your organization has a complete understanding of how the sys‐
tem works, and we are often bitten by an important bit of context that we
didn’t have. Although a complete understanding of our systems is unattaina‐
ble, by seeing the work of others, we can learn more about how the system
works. I’ve learned about all sorts of operator interfaces I never even knew
existed.

There’s no better way to improve at a skill than direct experience. However,
we can also learn from the experiences of others if we have the opportunity

74

to watch them in action. The REPL anecdote at the beginning of this essay is
a great example.

How do you learn from the experts inside of your organization? In general,
the best way to facilitate skill transfer is to watch experts in action. Ideally,
you’re working alongside them. Watch them solve real problems and docu‐
ment how they mitigated operational surprises: you see how they interpret
signals, which tools they use, and you ask them how to make their decisions.

My favorite approach to making work visible is by telling stories. We humans
seem to be wired for listening to stories, especially those that contain tension
and drama. And there’s no better source of tension and drama than
incidents!

When we treat incidents as an opportunity to make work visible, this radi‐
cally changes what our post-incident write-ups look like. The focus of these
write-ups shifts from preventive action items to narrative description. We’re
now writing a story of how the incident unfolded over time, from the per‐
spectives of the different engineers who were engaged. By documenting our
incidents using a narrative structure, we can harness the power of storytell‐
ing to make work visible in a way that’s compelling to the reader.

A good narrative description describes what was going through people’s
minds in the moment. Think back to the last incident you were involved in.
What signals were you receiving that gave them a clue that something was
wrong? What led you to look at a particular dashboard or error log that gave
you that signal? How did your understanding of what was happening evolve
during the incident, and how was it shaped by the later signals you received?
How did people coordinate?

Narrative-style write ups take longer to write and longer to read. But, if the
narrative is written well, people will happily read the whole thing. They’ll
learn more about your system than they ever would from a traditional root
cause analysis.

Collective Wisdom from the Experts 75

An Overlooked
Engineering Skill
Murali Suriar
Google

Let me tell you about the time I was on call for 100 different services.

How did this happen? My team was responsible for connecting to various
network services run by other companies. The services ran on top of the
same physical infrastructure but were otherwise extremely diverse. Routing
protocols, application protocols, firewall rules—everything was different.

One day I might handle a request for new access to an existing service, the
next, debug an application by going through several firewalls and NAT (net‐
work address translation) devices on a service commissioned the previous
month by a contractor who had moved on to another job. In an ideal world,
the person with the most context would be on call when that service breaks.
The world is not ideal.

Failing that, what did we do? Diagrams. If you ask someone to draw a dia‐
gram representing a system, you get insight into how they think about that
system.

Ask two people on your team to draw an overview diagram of a system your
team owns and then compare the two diagrams. The similarities and differ‐
ences in the diagrams will likely reveal something about the mental models
that each team member is using when interacting with the system. Diagrams
are a communication tool, but more than that, they are a tool for recording
and sharing mental models. Their greatest power is not in what they display
but in how they express and shape people’s thinking about systems.

Once a mental model can be recorded, reproduced, and shared, it becomes a
general-purpose abstraction. It speeds communication and gives people stan‐
dard tools they can refer to when reasoning about behavior, outages, and
proposed changes to the system. Even if the abstractions are not strictly
accurate, when most of a team shares the same mental model of a system,
that system’s behavior will evolve to match the model over time.

76

Following in the footsteps of other network engineers, we applied their con‐
ventions for drawing diagrams at different layers (physical, data link, net‐
work, routing, and security policy) and even for some de facto standards for
icons for devices to our infrastructure and the services we ran. We had a
standard diagram of our physical infrastructure. The full version consisted of
nine pairs of devices; it could be reduced to five pairs of devices or five single
logical devices, depending on what level of detail was needed. Each of these
diagrams could be drawn from memory by anyone on the team.

We then created variants of these standard diagrams for each service, over‐
laid with specific details. When paged for an unfamiliar service, I was able to
orient myself quickly and understand how the service was structured.

Whenever I join a team, I look for their diagrams to help understand the sys‐
tem’s abstractions. If no one can teach me meaningful abstractions, then I
just draw what exists and try to use those diagrams to find abstractions and
models to aid my understanding.

So how do I go about doing this?

• If I start with some simple abstractions, I build a diagram for each one.
• If I start with diagrams, I think about which ones provide useful mental

models.
• If I start with nothing, I just draw what exists and see what patterns and

structures I find.

Remember, the goal is not necessarily 100% accuracy. Prioritize humans: the
diagrams and abstractions should be memorable and useful and should
remain current over time. Humans, after all, will be the ones using your dia‐
grams, whether for reference (like the preceding service diagrams) or for
study.

Collective Wisdom from the Experts 77

Unpacking the On-Call
Divide
Jason Hand
Microsoft

Disagreements about just who should be responsible for the on-call role have
always been a cornerstone irritation of my professional career. The argu‐
ments are all valid and the reasoning is sound. Yet despite all the logical and
fair points, engaging in the debate remains a contentious effort.

Predictably, once everyone has had an opportunity to share their points and
personal stories, a truce is made, relenting that the answer to the question of
who should be on call for a digital service is, “It depends.”

It depends on a multitude of scenarios and considerations, all of which are
unique not only to industries but across businesses and teams within organi‐
zations. Countless flavors of on call exist because the scenarios in which on
call is a necessity are limitless.

But here’s the thing: the olive branch statement, “it depends,” doesn’t really
solve or end the debate, nor does it get to the heart of why the argument per‐
sists. When you unpack the rationale behind strongly held feelings and opin‐
ions on the subject, you have to ask why we feel the need to continue to raise
the question of who should be on call. What problem is that solving?

Regardless of which side of the DevOps bimodal view of the world you fall
in, how systems are designed, built, and operated vary greatly, but most peo‐
ple agree on two important points: the on-call role is a necessity, and most
would rather not do it.

We all have scars from this thing, but for the debate to conclude, our per‐
sonal experience of being on call must first be recognized and acknowledged.
Each and every one of our experiences is valid and indeed important institu‐
tional knowledge of the collective understanding of what it’s like to be on
call.

My experiences. Your experiences. They all represent a higher-fidelity picture
and understanding about what took place, more than any log or metric

78

can—that is, if your goal is to improve the on-call role in a way that
addresses what truly bothers us about it. The personal realities of what took
place and the quality of the human impact are what we want to improve.

It’s easy to implement tools to help us minimize the business impact. Yay!
The board and stockholders will be pleased. But did we do anything to
improve the on-call experience for our future self and for those who will
follow?

This is the problem to solve, and it starts by providing the time and space to
share and listen, to explore what’s going on cognitively before, during, and
after responding to problems and, unfortunately, that data doesn’t show up
in transcripts, system logs, or time series data that we typically spend the
most attention on during a retrospective analysis.

So far, we haven’t found a meaningful way to include acknowledgment and
exploration in the mental calisthenics people go through as well as their cog‐
nitive reasoning, judgment, and decision-making mechanics in our retro‐
spective exercises.

However, to resolve the on-call divide, we need to start exploring the gap
between us. What was it like to be on call? Asking what happened, in the
hopes of understanding why so that we can prevent it, is no more than a top‐
ical medicine for a deeper problem; much more hides beneath the scar.

If we can look below the surface, we’ll find that with a little extra time and
effort, the irritations of being on call can be minimized and the divide nar‐
rowed simply by creating the space and safety to reveal a more complete pic‐
ture of what happened while we were on call.

Collective Wisdom from the Experts 79

The Maestros of Incident
Response
Andrew Louis
DigitalOcean

We’ve all been there: the first time we’re the IMOC (Incident Manager On-
Call, or Incident Commander, others might call it). My first IMOC page hit a
year into the gig and, regardless of all the observing I did before, my han‐
dling of it paled compared to the performances before mine. It wasn’t my last
fumble, but I began to build a high-level framework for incident manage‐
ment. With each fumble that followed, I added something new to it. The
framework has remained valuable as a starting point, and I hope it will be
helpful to you too.

There is more and better material dedicated to expanding how to manage an
incident, but here are the primary principles that I keep at the forefront.

Stop the Bleeding
Keep the focus unrelentingly on prioritizing mitigation. Although the con‐
versation might drift into deep root-cause investigations and discussions of
longer-term solutions, the first impulse should be to keep the ongoing con‐
versation focused solely on recovering the current situation.

What’s Everyone Doing?
At regular intervals (be wary of the cost this could impose on folks working
on the problem), continue to raise the question of what everyone is doing.
The goal here will be to keep track of the efforts, prevent overlapping work
from going on, and get health checks from the parties involved.

Raising this question also gives you the opportunity to ask another—Do you
need any help?—to gauge whether more resources should be leveraged.

As you work through the incident management process, it might not be
obvious when to move to a next step. Perhaps you could be a bit more cer‐
tain about which systems are affected if you spent an extra five minutes

80

gathering some more data points. In this scenario, always optimize for speed
over quality as you make your decisions, keeping the big-picture goal in
mind: to recover your systems fast.

At this point, you might realize that a lot of working through incident
response boils down to building the muscle memory and neural pathways
that come from repeated experience, but that doesn’t mean you can’t prepare
for the rotation.

Here’s a little starter preparedness checklist:

• What are the organization’s key metrics? In an e-commerce organiza‐
tion, this may be checkout rate and volume, storefront availability, and
so on.

• Do you have a sense of how to index from services to owners?
• Are you able to get a sense of the ongoing alerts going off across the

organization?

Regardless, all the frameworks in the world won’t prepare you nearly enough
for the first time you’ll lead an incident. My first hit around 4 a.m. in Tor‐
onto and my performance felt like the Chernobyl of incident management.
In a seat formerly warmed by maestros, I was a clumsy, amateur conductor.

A lot of working through incident response boils down to building muscle
memory and neural pathways that come from repeated experience. Over the
many pages that followed, with patience and practice, I started to fumble less
and less and soon started getting the orchestra to play some bops.

Collective Wisdom from the Experts 81

Effortless Incident
Management
Suhail Patel,
Miles Bryant,
and Chris Evans
Monzo

Humans are one of the most important factors in incident management pro‐
cesses, and that’s no different for incidents that SREs will become involved in.
Managed incorrectly, an incident can have too many parallel conflicting
streams (individuals stepping on top of each other) or not enough collabora‐
tion (individuals trying to resolve the incident on their own). Here are the
key steps to achieve effortless incident management

The first thing to do in all incidents is nominate an incident lead and make it
clear to everyone in the incident who the lead is at all times. This is the indi‐
vidual tasked with coordinating the roles and responsibilities of everyone
involved in the incident and delegating tasks. The incident lead doesn’t have
to be the person most familiar with the systems affected; rather, it can be
someone who can bring the right groups of people together. The lead does
not need to remain static throughout the incident; another individual can
take on the incident lead role once they’ve gained all the context needed.

Consider setting up a dedicated incident communication channel (in your chat
software) for each incident. A dedicated channel breaks down any existing
silos such as existing organizational team structures and communication
boundaries in favor of a new shared objective of everyone coming together
to resolve the incident at hand. As a bonus, a dedicated channel can serve as
a linear timeline of an incident as it unfolds. This can aid massively when it’s
time to write an incident report.

It’s important for everyone involved to take the time to describe clearly what
they’ve found and avoid ambiguity. The time taken for you to vocalize find‐
ings seems at odds with continuing to investigate the actual incident; how‐
ever, it can provide an implicit set of added validation. Examples of this are
things like explaining about sharing the output of commands or surfacing
documentation about a system that others may not be as familiar with.

82

During an incident, you may encounter additional things that aren’t as
intended (such as broken dashboards or out-of-date runbooks). Log follow-
up actions during incidents, rather than waiting until the end, so they are not
forgotten. Once the incident is over, the incident lead can evaluate the pro‐
posed action list and assign owners for the actions you decide to keep.

Incident response is a flurry of actions. Automation can help reduce the
overhead. We built a tool called Response to help reduce the pressure and
cognitive burden on individuals during an incident and steer everyone
through the incident management process in a unified way. Response gives a
step-by-step flow to log an incident with a lead, start a dedicated communi‐
cation channel, escalate in another team, and log actions, all without leaving
Slack (our preferred chat software at Monzo).

We spent a lot of time making the user experience of Response, for declaring
and managing incidents, as frictionless as possible. All incidents are auto‐
matically cataloged in a dedicated Slack channel by Response on creation.
Each incident displays the title, severity, incident lead, and Slack channel
front and center.

Building tooling and processes around incidents isn’t everything, though.
Those involved in an incident need to have the cultural safety to communi‐
cate effectively without distraction, judgment, or prejudice on their abilities.
Incidents and their retrospective debriefs should be free from finger-pointing
or assignment of blame. Having an effective incident management process
revolves around having both the right tooling and the right cultural attitude
toward resolving the incident at hand.

The incident management process doesn’t need to be a burden. Done cor‐
rectly, incidents can be powerful lessons for everyone on how systems work
together, gather trust and empathy from other peers, and showcase the agility
and collaborative nature of an entire organization.

Collective Wisdom from the Experts 83

If You’re Doing Runbooks,
Do Them Well
Spike Lindsey
Shopify

Runbooks (also known as playbooks) are not a silver bullet (nothing is), and
yet a common action item after an incident is “update runbooks/add missing
runbooks.” So why do we persist?

Runbooks are generally concerned with known unknowns, and we cannot
anticipate every problem. They share all of documentation’s pitfalls: accuracy,
quality, maintainability, drift. They are relied on in time-pressured, stressful
situations. They can sometimes be a fragile bandage over reliability issues:
instead of investing in fixing underlying issues, teams overinvest in run‐
books, creating new sources of toil. They can be seen as direct substitutes for
training and experience, resulting in situations in which newer or less-
experienced team members are put on call for systems that they don’t yet
understand, simply because “runbooks exist.” Inaccurate or outdated run‐
books can sometimes be more dangerous than no runbooks.

From that brief list, you might think that I am deeply opposed to runbooks—
quite the opposite. As with any system, understanding the downsides means
that we can work to mitigate or fix them and benefit better from the upsides.

Runbook creation, maintenance, and review should be a whole-team activity.
Recognizing that runbooks are a solution to a knowledge distribution prob‐
lem (rather than a technical problem) can facilitate writing them, especially
when done in a collaborative way. Runbooks capture the thought process and
decision making of a team member who knows how to fix a problem. Some
possible questions for that team member are: What are you using to deter‐
mine whether there is a problem? What tools do you reach for? What feeds
into your decision process? Are any actions dangerous or risky? What parts
of this process have tripped you up before and that you’d recommend taking
extra care doing? Periodically reviewing runbooks as a team also allows this
knowledge to be reviewed and questioned, especially as systems evolve.

84

Runbooks are technical debt. They are often the only useful documentation of
a system’s technical debt and toil. (The cards loitering at the bottom of back‐
logs don’t count.) When reviewing an existing runbook, teams should ques‐
tion why it exists and whether it can be eliminated. By this logic, having too
many runbooks is an anti-pattern. Seeing runbooks as cross-system orches‐
tration (with humans as the controller) may also help understand what can
and can’t be easily automated away, or whether there’s a missing control
system.

The worst time to read or run a runbook for the first time is in the middle of
the night, during an incident. Think of fire extinguishers or smoke alarms:
they need to be regularly tested to make sure that they will work when
needed in an emergency. This includes checking that links and code snippets
actually work. Keeping a record of when a runbook was last used or tested
and running through stale ones also provides an opportunity to assess con‐
tinuously whether that runbook is still needed.

Runbooks cannot and will not solve every incident. But that’s fine; as systems
grow in complexity, teams mature, and incidents become more novel, there
is a point at which an investment in runbooks starts to show diminishing
returns. In the short term, this may mean an evolution in the runbooks’
focus, either toward signposting of useful resources and diagnostic techni‐
ques or toward a more minimalist approach: isolate/terminate/cycle what’s
broken, and if that doesn’t work, escalate.

In the long term, creating a healthy culture and process around runbooks—
in other words, a culture based on knowledge sharing, collaboration, leveling
up, and preparation—can have a better payoff than even the runbooks them‐
selves. If you’re doing runbooks, do them well.

Collective Wisdom from the Experts 85

Why I Hate Our
Playbooks
Frances Rees
Google

Playbooks (also known as runbooks) in SRE are collections of documenta‐
tion intended to help an on-caller resolve issues. There are many styles of
playbooks, but most that I’ve encountered suffer from the same anti-
patterns.

First, they can contain too much detail, making them difficult to maintain
and creating large documents, which complicates finding specific informa‐
tion. This is often caused by a fear of missing anything. Examples of such
playbooks are those written during a transfer of on-call ownership or as a
continuous log by on-callers.

It’s infeasible to assume that any playbook is absolutely complete, so it’s
important to expect it to be a tool that cannot fill the entire role of an SRE.
The content covered in team onboarding is a useful baseline for the level of
detail that can be elided as assumed knowledge. It’s also beneficial to replace
details, such as how to locate a job with links, to speed up data search
without requiring recall of myriad small facts. A special case to consider is
playbooks written for users and customers of an infrastructure service, as
opposed to those written for the owners of the service, for whom a very dif‐
ferent level of background knowledge is needed. Caveats and unintuitive
implications can easily cause accidental harm to users.

The opposite can happen with too little detail. Well-meaning requirements
for documentation, but without incentives for spending time to make it use‐
ful, lead to empty templates. Too little detail actually wastes more time than
being able to see that no documentation exists, so a minimum level of viabil‐
ity is needed on submission. At best, an empty document isn’t useful, but at
worst, it can foster a pattern of ignoring the playbooks (even if they’re upda‐
ted), because the on caller has internalized that they aren’t useful.

It sounds counterintuitive, but playbooks should not be written by experts
on the topic. It’s often difficult for people very familiar with a system to

86

identify the context and subtleties that only they know, so they are better
suited to be information sources and reviewers.

The last anti-pattern is that of being too prescriptive. Any playbook that can
describe the exact steps to resolve an exact circumstance should be an auto‐
mated script instead. An alert should mean that the system can’t fix itself,
because automation is much faster and much better at fully enumerated
repetitive tasks than humans. We escalate to humans for a complex response,
not a fast response.

If on-callers are conditioned to follow a script, novel events also become very
difficult to handle, which is a problem because they’re the ideal environment
for SREs in our continuing mission to automate ourselves out of a job. It’s
important to recognize that playbooks have a life cycle:

 ┌->1 Identify issue

 | 2 Debug

 | 3 Add alerts

 | 4 Write documentation

 |┌>5 Automate resolution

 |└-6 Update documentation

 └--7 Have a different problem

We very often get stuck at #4. Prescriptive playbooks aren’t a failure that
should be deleted, but they’re an opportunity to automate and iterate.

Ideally, a playbook should only contain:

1. Why do I care? Severity and qualification of the user-visible impact.
2. What can I look at? Consoles, logs, and inspection tools.
3. What can I do? Mitigation tooling.
4. Whom can I escalate to? Developers, back-end teams, or a dedicated

incident response team.

Good playbooks at their heart reflect the SRE culture to which we aspire.
They rely on providing the right incentives not only to document but to
automate and innovate. Identifying and focusing on the goals of the team
helps refine useful information for navigating the uncertainty that makes our
job interesting and avoiding the tedium.

Collective Wisdom from the Experts 87

What Machines Do Well
Michelle Brush
Google

One common approach to building automation is to have a human do the
manual process, capture it, and then create a script that reproduces the
human’s workflow. It seems reasonable—so what’s wrong with it? This
approach doesn’t consider what steps required a decision that only a human
could make, and it doesn’t recognize that a computer might be able to do
some things better.

Understanding what humans and machines do well is essential to building
good automation.

To automate a complex process, we need to evaluate which aspects of it
require human interpretation and reaction. This usually means looking for
places it could fail. If some command executed or service call returns an
error, we should consider what the human would do at that time and com‐
pare that to what the machine could do. Can we replicate the same decision-
making process in code? If so, we should. If not, we can fail the automation
and alert a human to come make the right decision. For really complex and
costly decisions, keeping a human in the process sometimes makes sense.

Another option is to redesign this step so it doesn’t require a human. Auto‐
mation engineering may require revisiting the design and interfaces of sys‐
tems it will automate, because there are design principles that make it easier
for machines to decide and act. If the system being automated doesn’t adhere
to the principles, the automation is likely to be fragile—and fragile automa‐
tion needs human supervision.

Idempotency, the property of an operation that allows it to be repeated
without side effects, is key to automation. If something fails or fails to return
a success in a timely manner, the automation can retry it without conse‐
quence. This is a design principle that allows automation to be resilient.
When possible, we should favor making the commands and services being
called by automation idempotent.

88

Consistent and codified error reporting is another property of systems that
allows for better automation. If humans have to do deep troubleshooting or
interpret strings to understand what happens when something fails, the auto‐
mation will fail and require humans to intervene. Automation should also
avoid relying on parsing or matching descriptive strings, because it creates a
risk that things will break if those strings change or similar strings are
added.Consider also that systems being automated need the ability to scale.
Tools and APIs (application programming interfaces) built for human inter‐
action may not keep pace with the speed a machine can execute. The under‐
lying system may need to be load tested and improved to meet the demands
of the automation.

Automation is often composed of other automation. We should expect our
automation one day to be part of a larger system. This means the automation
we build should meet the same aforementioned properties. We should make
the automation idempotent. We should have it use consistent and codified
error reporting, and we should make sure it can scale. We should also have
tests and documentation. We should monitor it, just like the rest of the
system.

The more we make automation like any other software we’d develop—mean‐
ing carefully designed, tested, monitored, and documented—the more it
becomes something we can safely rely on.

Collective Wisdom from the Experts 89

Integrating Empathy into
SRE Tools
Daniella Niyonkuru
Shopify

Site reliability engineering includes best practices such as building self-
healing services, implementing automatic systems, and watching the quality
and quantity of on-call shifts. Yet, we hardly have tools for site reliability
engineers that promote self-healing from operational exhaustion, relieve
incident-related stress, and track on-call rotations.

Compassionate empathy can help us reach this objective by acting on the ele‐
ments that make burnout more likely to occur. Building compassionate
empathy into software requires understanding (and sometimes collecting)
the elements that are often at the center of SRE distress and encoding-related
alleviation measures.

These steps support integrating an empathetic approach:

1. Understand the source.
2. Find the right metrics (SLIs).
3. Fix an acceptable range (SLOs).
4. Draw the consequences (SLAs).
5. Implement tooling to track SLIs, check SLOs, and enforce SLAs.

Let’s illustrate these steps with an example. Shuri is an SRE at SuperSonicSys‐
tems, and a year ago her team was revamped along with their on-call rota‐
tion. This resulted in her taking stress leave. Let’s apply our approach to
ensure that this does not happen to the rest of the SRE team.

To understand the source, an investigative survey was sent to Shuri. The
results show that she was on call more often and encountered numerous
alerts, making it hard to recuperate. This happened because the on-call rota‐
tion previously handled by nine people was reduced to three. Although the
systems were divided by the manager, extracted incident response data

90

shows that Shuri was on call more often and received more pages as her
shifts coincided with the company’s release week. In addition, the company’s
on-call policy does not offer recovery days.

The quantity and quality of on-call shifts were the main culprits. The three
metrics the organization focuses on are:

• On-call frequency (How many people and how often are they on call?)
• Alerts per shift (How many alerts do SREs get per shift?)
• SRE happiness (What’s the happiness level of SREs after their on-call

shift?)

From these SLIs, SuperSonicSystems picked some SLOs.

On-call rotation
A minimum of eight people should be in the rotation, assuming week-
long shifts and a primary/secondary setup.

Alerts per shift
The maximum of 10 alerts per shift, with nighttime alerts carrying dou‐
ble the weight. In the future, higher-severity alerts might also be associ‐
ated with a higher weight.

SRE happiness
A survey using an emoji rating is sent to SREs after each on call, with the
goal to have an average of ☺. This is different from the previous SLOs in
that it is qualitative instead of quantitative.

This step requires trial and error until a comfortable balance is achieved.

The last step is setting the consequences, or SLAs.

On-call rotation
If the upper range is not respected, teams should staff their on-call rota‐
tion with more people to make this sustainable. In a transitory phase,
people who are more often on call will get two mandatory consecutive
days of recovering to prevent burnout.

Alerts per shift
If the maximum number of alerts has been attained, the pager will be
taken by someone else on the team to allow proper time for recovering.

SRE happiness
A survey below the average rating will prompt a follow-up and poten‐
tially related actions. For instance, an SRE who is going through a rough

Collective Wisdom from the Experts 91

life patch could be taken off the rotation for a while. These cases should
be individually analyzed by team leads.

SREs must support companies’ most critical systems, but the elements that
make the role exciting and challenging also put them at risk of burnout,
health issues, and discontentment. This example shows how empathy can be
integrated into an on-call policy for stronger, more resilient teams.

97 Things Every SRE Should Know92

Using ChatOps to
Implement Empathy
Daniella Niyonkuru
Shopify

“Janet is handling an incident lasting over an hour. Another available
commander should offer to hand off or override the rest of their shift so
Janet can take a break!”

This addition to our ChatOps incident response reminder sequence sounded
so simple at first, yet it wasn’t long after that I observed how impactful it was
to SREs who were on call. The two-sentence prompt led available command‐
ers to reach out right away and offer to help—and this gesture seemed to
reinvigorate the on-call commander.

That’s when I realized that ChatOps, beyond automating and offering an easy
interface to manage incident response and infrastructure, also has the power
to make our work more sustainable.

SRE teams are often overworked due to the nature of their work. The focus
can be so much on systems that the SREs behind them are forgotten. Dealing
with too much toil, having night shifts, and constantly being the first line of
defense against outages can take a toll on SREs and consequently the systems
they work on. In Integrating Empathy into SRE Tools, page 90, I discuss how
implementing empathy is important and can alleviate the burden, but given
that teams are also resource- and time-limited, how best to implement it?

We look to a trusted tool in the SRE toolkit: automation. After doing the dif‐
ficult work of creating the boundaries, limits, and budgets for empathetic
work, using ChatOps is a great way to ensure that they can be implemented
without requiring constant observation. ChatOps is all about conversation-
driven operations and uses group chat tools to go beyond basic conversation
with context and actions taken from within the chat tool itself. This helps
build in empathy and automate actions that will prevent burnout and
exhaustion.

93

The introductory example shows how this works: by tracking the elapsed
time since the beginning of the incident and sending an automated reminder
to the commanders’ Slack channel. It hence automatically prompts a reaction
from other commanders who would otherwise be unaware of the situation.

Similarly, ChatOps can serve as a safeguard for on-calls’ quantity and quality.
Communication between the chatbot and third-party services (PagerDuty,
Datadog, and so on) is usually done by webhooks. By implementing on-call
scheduling commands, a chatbot can, in response, validate the sustainability
of the desired schedule against set gold standards.

For instance, a new manager who would attempt to change the schedule to
have only three engineers when the minimum is eight could see the bot reject
their request and nudge them to follow best practice. As for tracking on-call
quality, a chatbot can automatically send a survey after each shift and help
track the team morale. It can also prompt SREs to take time off when they
have encountered particularly stressful on calls.

By tracking the number and severity of incidents, a chatbot can let the SRE
know that they have an on-call recoup day or are off for the rest of their shift.
By tracking the quantity and quality of on-call through tools that extract
schedules’ data and alerts, ChatOps ensures even load among the team and is
essential to prevent burnout. Not only does it help sustain SREs, it can pro‐
vide management with useful data to spot problems early and fix blind spots.

The examples presented here demonstrate that ChatOps can be used to
maintain a healthy team by exploiting the power of automation. It prevents
time otherwise spent tracking elements manually and improves adherence to
set budgets.

97 Things Every SRE Should Know94

Move Fast to Unbreak
Things
Michelle Brush
Google

As SREs, we see our job as balancing velocity with reliability. We know each
change deployed to production, whether code or configuration, carries some
risk of causing an outage or other degradation of service. When an outage
happens, our immediate reaction is to be more cautious, to slow down pro‐
duction changes.

Then things still break. Despite our efforts, there are still outages. Our
instinct was wrong. Things are now more likely to break exactly because we
slowed down. When a plane stalls in midair, the natural reaction might be to
pull up, to pull away from the ground. The right answer is to point the nose
of the plane down and increase engine power. This generates lift. Sometimes
the right thing to do is the opposite of what our intuition tells us.

Your development organization is a faucet. It produces change (whether fea‐
tures, bugs, or architectural work) at a somewhat constant rate. Separately,
there’s a rate at which those changes can flow into production. The produc‐
tion flow rate is determined by your deployment cadence, the speed of your
quality assurance process, any approval requirements, and so on.

What happens when you slow that cadence, whether explicitly by freezing or
implicitly through increased review, human checks, or a change approval
process? You accumulate a bigger backlog of changes awaiting deployment.
Production looks less and less like your testing environments. Each addi‐
tional change batched into your deployment increases the odds something
goes wrong.

With this increased risk, inevitably, you deploy and things still break. What
do you do? The first and obvious answer is to roll back. That’s a great answer.
However, if you’ve deployed as a batch of changes, you have to roll all of
them back: bug fixes, features, and all. Some of those changes deployed with
the bug might be critical needs for your users.

95

Say instead of rolling back, you mitigate the immediate concern and then
want to fix the issue. That fix now needs to go through all the tests, reviews,
and controls you introduced, delaying mitigation.

In the long term, the intuitive reaction to production breakage prolongs
breakages. This isn’t to say you should move fast because you’re going to
break things anyway. You want your qualification and release process to be
robust. It should also be fast. You will achieve better outcomes by giving peo‐
ple the levers and buttons they need to respond and repair the system
quickly.

Deploy what’s ready as soon as it’s ready. Then trust it. You can achieve this
with continuous delivery. If you’re not there yet, you can approach it through
a regular, frequent, and decreasing deployment cadence: weekly to daily,
daily to hourly, and so on. Your deployment still carries the cumulative risk
of all the changes packed into it, but you’ve constrained that risk to changes
produced in the time period you selected.

Once the flow of changes coming from the development organization
matches the flow of changes into production, the gap between your mental
model of the system and the actual system shrinks. Things become easier to
detect and fix.

When you still have outages, as you will, and your gut tells you to slow down,
consider slowing the rate of feature development work, not the deployment
of it. Shift engineering efforts to improving system observability or faster
tests. Build improved tools for quickly mitigating outages: rollback automa‐
tion, failover tooling, and so on. Invest in those long overdue architectural
improvements. Also, realize that even these changes should be deployed to
production incrementally and often.

The key to reliability is the ability to make the system better quickly. Any‐
thing that slows down change slows your ability to do this as well.

97 Things Every SRE Should Know96

You Don’t Know for Sure
Until It Runs in
Production
Ingrid Epure
Netlify

The idea of testing in production is usually met with two types of reactions.
Sometimes you get enthusiastic YAYs! Other times, you might get shocked,
disapproving looks.

What explains this divide? This is one of the most interesting paradoxes of
engineering. We often view production as this house of cards–like, fragile
ecosystem that needs to be approached with care, silk gloves, or bunker gear.
At the same time, we dream of observable systems and peaceful, pager-free
nights.

Spoiler alert, you can’t have it both ways. So how do we bridge this gap?

For one, we must confront the myth that absolutely, under no circumstances,
should bugs ever reach production. The idea of viewing shipped code as an
experiment somehow implies that it’s not done or scrappy and that iterating
while shipping is somehow bad.

You may feel that you can’t test in production because of a lack of good tool‐
ing. The bravest organizations attempt to build tools in-house, yet without a
unified standard of running production experiments for the rest of us, that
usually means scraping some Bash script together in the little time left
between feature work sessions—or, even worse, making it an “ops problem.”

However, it’s far from an all-or-nothing approach; instead, it’s a sum of small
things that can fundamentally change the developer experience, some of
which you might already be doing!

There’s feature flagging, which allows modifying system behavior without
changing code.

97

There’s tooling to access production data safely or interact with your applica‐
tion from the command line. Whether you love or hate Rails doesn’t change
that the console is amazing for debugging, and many frameworks and lan‐
guages can take a page from that book.

There are libraries that help with refactoring and migrating legacy systems
by running old code paths alongside new ones, comparing results and even
performance!

There is also observability, or heavily relying on events and distributed traces
rather than on traditionally fixed metrics. In other words, instrument the
code to craft a story about the systems rather than provide fixed information,
and have it answer dynamic, complex questions.

However, this isn’t just about tooling; it is also a chance to start viewing ini‐
tial production code as an experiment. Think of it as the first pancake to test
whether your griddle is at the right temperature. You can always adjust for
the next one. Imagine a shift in mindset in which we make observations and
draw conclusions to understand better how our systems work, and the
impact of our changes at scale, in a real-life environment. It involves ship‐
ping in smaller iterations, which increases the likelihood of catching really
bad edge cases early, and mitigating them quickly, making production less
scary and final.

Production transforms into an avenue of creativity and trust by providing
much-needed confidence in your system and changes you’ve just made. It
also means sleeping better at night, knowing your code has a lower risk of
running into unknown bugs that could take days to fix.

And couldn’t we all use a little more peace and sleep?

97 Things Every SRE Should Know98

Sometimes the Fix Is the
Problem
Jake Pittis
Stripe

If simpler systems fail less and are faster to restore, why do incident reviews
focus so much on adding fixes rather than on removing components and
code? When we should be reducing bug surface area and increasing operator
understandability, we instead lean toward adding validation, sanity checks,
traffic shifting, and synchronization—all things that add complexity. Even
just fixing bugs can end up adding extra code and complexity.

Complexity is often justified with the benefits to reliability outweighing the
risk of future incidents. At the end of the day, some complexity is necessary
for business functionality, just as some complexity is necessary for reliability.
But how often do we focus on trying to remove excess complexity?

Incident reviews are a perfect opportunity to target and remove detrimental
complexity. Sometimes this can be code that increases bug surface area and
sometimes it can be something that makes systems harder to understand and
leads to slower incident response. In both cases, if we can show that it con‐
tributed to the incident and that it’s not necessary for reliability or business
functionality, then it should be considered detrimental complexity and be
removed.

Incidents give us the space to zoom out and notice detrimental complexity. If
a bug leads to an incident, we can ask ourselves whether something about the
system made it hard to test or to notice that a bug was present. Maybe it was
hiding in some concurrent code. By zooming out more, we can ask whether
the functionality provided by the—almost always complex—concurrent code
is necessary. Remember to ask the tough questions, such as whether the per‐
formance benefits that the concurrency provides are actually a requirement
for the system’s functionality.

Similarly, to analyze a slow incident response, we can ask whether there was
something about the system that confused or misled operators. Maybe it was
hard to tell when a piece of configuration was dynamically updated. Now is

99

the time to ask whether the functionality this complexity provides is neces‐
sary. For example, could the configuration be made static without sacrificing
functionality? Most important, don’t forget to consider whether the complex‐
ity contributed to past incidents!

Simpler systems that aren’t perfect are usually better than complex ones.
Immutable data structures allow programmers and operators to avoid track‐
ing state changes and often the performance hit is not noticed. Polling can be
less efficient and slower than push-based pipelines but avoids difficult con‐
currency patterns. The tooling required to maintain a zero-downtime system
can be quite involved, much more so than just having regular maintenance
windows. Dynamic configuration can be speedy and toil-free, but configur‐
ing services statically and forcing a restart is dead easy to understand. Even
just having fewer configuration options makes it way more likely that an
operator will guess the current state of the system much more accurately.

Every time we add functionality to our system, it brings along some com‐
plexity. However, not all complexity is detrimental to reliability. Some is nec‐
essary. Because we can’t always tell whether the complexity we’re adding
hinders our future reliability, incident reviews are a perfect time to discuss
what role it played. In the end, it’s always a trade-off. But I promise, with a
little bit of searching, you’ll find lots of detrimental complexity during your
next incident review!

97 Things Every SRE Should Know100

Legendary
Elise Gale
Microsoft

Why are some outages forgotten as soon as they are mitigated, while others
go on to become team legend?

I believe it’s because legendary stories follow the hero’s journey, a model used
in literature to understand a diverse set of tales, from Moses to Harry Potter.
Outages, like a hero’s journey, have three key parts: the call to action, the
road of trials, and the return. I imagine on-call engineers embarking on an
epic quest, and following these steps shows us what makes an incident story
exciting—and, hopefully, gives us the insight we need to prevent it from hap‐
pening again.

My legendary call to action begins with, “It was two nights before Christ‐
mas. . . .” The timing matters because, frankly, the issue would have been
much less interesting any other day of the year, but I was new on the team
and had to find the courage, on a company holiday, to page my boss for help.

The road of trials is often the meatiest part—this is when you diagnose and
mitigate the situation. This phase is a gold mine for WTF moments. If you
are telling your story aloud, this is where your audience should collectively
groan. Maybe the log message was missing the one detail you needed to
unravel the mystery. Or perhaps, like me, a simple configuration change took
six hours and four developers to deploy because of missing tooling.

We discovered the issue was caused by a sister team doing some “harmless”
end-of-year cleanup. Luckily, we have matured as a group since then, but I
pull out this story anytime someone complains to me about holiday lock‐
downs or production access security. The lessons from the road of trials are
where you should invest your development time to prevent future pain.

The return is important because it has almost nothing to do with our techni‐
cal systems and everything to do with our team culture. When performing
postmortems or root-cause analyses, we often think of incidents in terms of
TTx (time to x), as in time to detect or time to mitigate, but these metrics
provide us very little insight into what makes an incident interesting. If this

101

is the most interesting part of your story, is it for the right reasons? Or does
your team need to work on fostering a blameless culture in which these sto‐
ries can be shared without judgment?

These legends, whether we mean them to be or not, often live beyond our
teams. They are shared at meetups and breweries or, often, during other out‐
ages. I learned about the Azure Leap Day outage of 2012 in a recruiting talk
at my university. A junior engineer shared his story of writing a code fix in
the same conference room as technical fellows and vice presidents. His story
demonstrated that you could be involved in important events very early in
your career. Ultimately, it shaped my decision to join Microsoft.

Many years and on-call shifts later, I now understand that if an engineer is a
hero, there is a gap in the process, the infrastructure, or the tooling. I have
also learned that the hero is never alone. After I worked up the courage to
call my boss, we figured out the problem together. The four engineers who
helped push that configuration change are valued friends and colleagues.
And yes, we shared our favorite incidents while we worked.

So gather round, tell your tale, but remember, it isn’t all about the hero. It’s
about the way adversity brings teams together and how we prevent a sequel.

97 Things Every SRE Should Know102

Metrics Are Not SLIs (The
Measure Everything Trap)
Brian Murphy
G Research

“Measure everything” is a trap.

It is throwaway advice passed down over time—and no one can rightly recall
why. It’s the project saddled to the summer intern when immature organiza‐
tions run out of useful work to offer them. We spend hours augmenting code
for those what-if situations and ultimately end up spamming the metric
search space with useless data points. Do not measure everything.

Back when memory was expensive, you had to be picky about what metrics
to store. You had to focus on the most important ones for your service. As
the cost of memory decreased, it became increasingly cheap to store increas‐
ingly more metrics—with a justification of providing value someday in the
(far distant) future. For most of us, that future date never arrived.

The question then becomes, “What is worth measuring?” Focus on metrics
that can build quality SLIs. First, let’s describe the difference between metrics
and SLIs. Metrics are raw numbers: how many items in a queue, how many
days since the last failure, how many items in a shopping cart. SLIs are com‐
binations of metrics that tell a story: if the queue keeps filling at the current
rate, how much time is left before the system performance begins to degrade
or completely falls over? Metrics provide evidence that the system simply
works. SLIs provide evidence of how well the service works and on how long
it will continue to work well. This is the customer experience story, and this
is what you should focus on.

Customer experience impacts more than the paying customer, too. Every
team member who uses your service or on-call staff member will also be a
customer. As you work out what metrics to deliver, consider the 2 a.m. fac‐
tor. When woken up in the middle of the night, will this metric help me or
them get the service back up faster? Will this metric be useful for alerting?
Will this metric accurately gauge the service’s health? If the answer is no,
reconsider your investment in that metric.

103

As the service matures, it is important to revisit your SLIs constantly. These
metrics go stale as quickly as functions do. As you refactor your code, also
refactor your metrics to verify that the SLIs are still appropriate. Take time
for this work, because it will pay off tenfold in the long run, and make sure to
signal to stakeholders the value of doing this, especially because the payoff
isn’t immediate. Be prepared to revisit your metrics monthly, if not more
often. Reviewing often will lead to small tweaks rather than a drastic over‐
haul of stale SLIs.

This work can seem thankless, but it is vital; at many organizations, most
metrics will never be looked at or read. A 2019 Twitter document reported
that less than 97% of metrics were ever read even once. In the case of Twitter,
that’s petabytes of metrics that will go unread. Navigating that metric search
space is not easy without incredibly sophisticated tooling, of which many
SRE and engineering teams will not have available.

Making the decision not to measure something can sometimes be daunting
and may not seem like a debate worth having. But what should you do?
Focus on your customers’ needs and measure the SLIs that will improve their
experience. This will mature your offering and prevent you from falling into
the measure-everything trap. Your engineers will thank you for not having a
noisy pager, too.

97 Things Every SRE Should Know104

https://oreil.ly/wrUVI

When SLOs Attack:
Pathological SLOs and
How to Fix Them
Narayan Desai
Google

SLOs are a wonderfully intuitive concept: a quantitative contract that
describes expected service behavior. These are often used to build feedback
loops that prioritize reliability, communicate expected behavior when taking
on a new dependency, and synchronize priorities across teams when prob‐
lems occur, among other use cases.

However, SLOs are built on an implicit model of service behavior, with a
raft of simplifying assumptions that don’t universally hold—assumptions
such as the independence of requests, even distribution of errors, and the
equality of all requests. These assumptions make SLO rules of thumb fall
apart with real-world services. Understanding where and how these assump‐
tions break down is critical: cases when SLOs inadvertently send us in the
wrong direction.

Consider error budgets: a number or percentage of failures over a time inter‐
val. These errors could occur in a short period or at a low rate over a long
time. They could be distributed across all users or focused on a few. Individ‐
ual users could have low or 100% error rates. All these factors color how out‐
ages will be perceived and what kinds of effects they have on users.

Further, how best to deal with catastrophes? Many service providers try to
incorporate bad days into SLO promises; however, some bad days are very,
very bad days. This results in a compromise that serves in both fair weather
and foul poorly. Neither is well described.

When things go really poorly, and multiple periods of error budget are con‐
sumed, what then? As appealing as the prospect of freezing a service for
years may be, it rarely serves the best interests of either users or service
providers.

105

Similarly, because error budgets often incorporate tail risks, they represent
the P99+ bad experience. Hence, spending an error budget aggressively is a
good way to deliver a consistently bad experience to customers.

Mismatches between SLOs and the average experience customers want can
also lead to disagreements between service providers and their customers.
Customers tend to expect the experience they received yesterday, even if that
was a positive outlier on a service-wide basis, and changes to this behavior
tend to cause their architectures to have issues.

At the end of the day, SLOs are about quantifying delivered service, setting
appropriate expectations, and changing tactics when things aren’t going well.
All of these activities are crucial to deliver trustworthy services. So what can
we do to fix SLOs?

1. Use different methods to describe discrete aspects of SLOs. Have steady-
state error rate SLOs to measure transient error rates, but use bad-
minute type SLOs to characterize major outages. Measure the frequency
and severity of major outages and communicate them.

2. Measure and store per-customer SLI data to determine the experience
individual customers are having and whether errors are evenly
distributed.

3. Don’t exercise error budgets unless your SLOs actually approximate the
service you want to deliver to customers. This may or may not ever be
the right thing to do for some services.

4. Embrace the ambiguity of many SLO measures; our services are rich,
and a single aggregated measure of service goodness isn’t possible. This
approach leaves room for nuanced situational awareness and a variety of
directions that can be used to improve user experience.

5. Set SLOs at actual customer-desired behavior in steady state, not incor‐
porating tail risk.

With these guidelines, not only can we have SLOs that are less pathological,
but we also get a series of metrics that we can use to improve our services in
focused ways. With this, we can deliver reliable services with well-quantified
behavior.

97 Things Every SRE Should Know106

Holistic Approach to
Product Reliability
Kristine Chen and
Bart Ponurkiewicz
Google

You’ve made it.

Through redundancy, you removed all single points of failure. The services
are properly monitored and alerts are configured. Your recovery strategies
are tested regularly to ensure that your on-call team can react on a moment’s
notice. You’ve carefully looked at your requests and announced achievable
SLOs.

Job well done! Or is it? To ensure your product success, you have to take a
holistic approach, end to end, from user interaction to the bytes on the disk.
The typical front-end–back-end split isn’t that simple anymore. There are
layers and layers of abstractions. Your web service is a front end to your cli‐
ents; it sends requests to your processing back ends, which are really just
front ends for other services such as cache and storage servers. Turtles all the
way down.

And we’re only stacking more turtles on top: client-side applications. They
come in various shapes and sizes, from progressive web applications up to
apps running natively on smart devices. These apps have their back ends too:
shared libraries, databases, and local storage. Reliable clients are now more
important than ever, because more than 3.5 billion smart devices are cur‐
rently used worldwide.

How do we start applying a holistic approach? Look first to dependency
management and measuring the right things. We’ve all been here: a binary
starts crashing and we’re scrambling to find out what triggered it. Was it a
release or a configuration push? If so, for which service? If you can quickly
determine which part of the system changed, you can find the root cause
faster.

107

This means knowing which back ends the client is talking to, which shared
libraries are being used, and what dynamic configurations are being pushed.
Ideally, your system will only interact with explicitly defined dependencies,
so any new dependencies (read: possible failure points) are immediately visi‐
ble during incident response, and any back-end service degradation can be
attributed to specific user woes.

The most common metrics SREs look for are success and failure ratios of
RPCs (remote procedure calls). But what if your client was crash looping on
user devices? Your success ratio could actually go up, but that’s cold comfort
if your app is unusable.

Here’s another example. For a service with one million QPM (queries per
minute), a reasonable 99% SLO could exhaust its error budget through either
10,000 users getting a single error every minute or one determined user who
retries 10,000 times and gets 10,000 errors every minute; the ratio is the
same, but the experience is very different.

What should you measure then? Look at your users’ ability to interact with
the product: critical user interactions (e.g., opening a message and then
deleting it). These interactions tell you whether your users can use your
product. In addition, don’t forget to slice your data by the count of users
affected on different platforms and versions to make sure no group of devi‐
ces is disproportionately affected by some failure mode for extended periods.

Times have changed; the internet is now more heterogeneous than ever, and
most of the traffic doesn’t come from PCs anymore. With a plethora of
mobile operating systems on top of IoT (Internet of Things) devices, we can’t
pretend that the client side is not our responsibility.

Taking a holistic approach will help reduce the MTTR (mean time to repair).
A few minutes of downtime might be overlooked by your users (just a glitch)
but a few hours can lead to loss in user trust, bad press coverage, and poten‐
tial loss of revenue. Extending emergency support to the client side will lead
to even shorter response times and engender user trust when faced with an
outage. Start from the user and work your way out. You’ll thank yourself
later.

97 Things Every SRE Should Know108

In Search of the
Lost Time
Ingrid Epure
Netlify

Who hasn’t faced a significant outage caused by a problem you thought
could wait six more months—whoops! How we wish we could have avoided
this fire, and how nice it would have been to have had that time to prevent it.
But we never do; time is the scarcest of resources in engineering.

We keep ending up in this place, and we know why. Infrastructure teams
wear many hats: supporting product teams and running the existing systems,
on call, developer workflows, and provisioning; the list can go on. With so
few hours in a day and a finite number of resources, paying down tech debt
and building automation and tooling get deprioritized in favor of feature
work. After all, product is what sells; the company is trying to grow and stay
alive, so most of the effort goes into acquiring new customers by building
awesome solutions to their problems.

The deprioritization of this work robs us of the opportunity to be open to
changes or figure out how greenfield work might fit in with the current
work. In this world, wouldn’t it seem more sensible to wait for a Holy Grail–
type of project to solve a problem—to the detriment of small, continuous
improvements?

The lack of space or time is why it takes some organizations so long to figure
out things like CI/CD (continuous integration/continuous delivery). Instead
of rolling it out bit by bit, they focus on the enormity of the concept and its
associated risks. It’s why we are still paged in the middle of the night for inci‐
dents that require reading a runbook and applying the same number of steps
over and over again rather than investing in any sort of auto-remediation. All
solutions feel huge, and time is limited, so what’s the point in even trying!?
We must carry on this old way and suffer.

The problem with not investing equally on both sides is that the cost of
investment in reliability grows over time. The complexity added with new
features adds more cognitive load on engineers, making it harder to work on

109

reliability. The issues start to loom so large in our minds that we end up post‐
poning until we can have more time, maybe in the distant future—until the
inevitable outage.

Part of the solution is to prioritize working on something small toward the
overall reliability goals every day, rather than working on it for a week and
then moving on (and never returning). Organizing our days to fit shorter
chores makes our brain feel more at ease and builds a habit. From a business
standpoint, it also allows for more regular check-ins and continuous
improvements.

How do we solidify this model? It starts with a commitment at the company
level to create freedom for engineers to address consistently the reliability
concerns they have on a project.

That freedom translates to time, which, depending on your engineering
model, can be a percentage of the day, every day, or a week every X time (6
weeks to a quarter) dedicated entirely to tech debt. It’s then followed by an
agreement between engineering teams and infrastructure on the areas that
could use the improvements most.

So next time you have 30 minutes, think about how you can get rid of some‐
thing annoying. Thirty minutes a day adds up to 150 a week, 600 a month,
and 7200 a year! Imagine what you could solve with that time!

97 Things Every SRE Should Know110

Unexpected Lessons from
Office Hours
Tamara Miner
Improbable Games

During a team retrospective at a prior job, one of the engineers suggested
starting office hours so product teams could ask us questions about the tool‐
ing and services we provide them.

At the time, we struggled with low adoption of the tools we provided to
product teams, tenuous relationships with their stakeholders or internal cus‐
tomers, and a lack of understanding of how to make existing platform tools
(such as Prometheus) work the way product developers needed them to.

To be honest, I really didn’t think office hours would solve the problem; we
already had other communication channels, and we’d been unhappy with the
lack of feedback from stakeholders. To track patterns and make changes to
the process if needed, we set up internal monthly review sessions (and
reduced the frequency to quarterly after we worked out the initial kinks). I
expected to see patterns emerge, which might be easily solved with adding
documentation, automating something, or creating a better process. After
implementing Office Hours, we immediately noticed an improvement in
communication between our team and other people in the company.

To encourage people to show up and say hi, it was suggested we bring in
baked goods, so at minimum, I thought we would build some positive rap‐
port with other teams through food, which might ease the tension between
teams. To my surprise, even without baked goods, at least two people would
show up at that hour each week. (Slack announcements increased that num‐
ber significantly.)

Upon investigation, it turned out the Slack help channel was too intimidating
because asking a question publicly felt like setting oneself up to be shamed if
it was a dumb question. Not that that would actually happen, but the possi‐
bility was enough to deter folks. One unexpected pattern that became visible
was that non-engineers started asking us questions, as did many more engi‐
neers who were either junior, just starting out with a particular technical

111

area, or quite anxious—people who never asked us questions in our help
channel! Instead, we created a welcoming space (with occasional banana
bread) that created an informal safe place where people could come without
fear of being a bother, publicly declaring what they don’t know, or having
stupid questions recorded in perpetuity.

Non-engineers don’t want to interrupt or bother engineers by scheduling
specific time to have whiteboard sessions for noncritical learning. Psycholog‐
ical safety is often discussed with regard to blameless postmortems, but it
needs to be considered when developing an engagement model for SRE,
period. Otherwise, it is likely that more will remain unsaid. We found certain
questions only came up once we implemented Office Hours. For example,
PMs (project managers) would ask about systems details or performance
improvements. Office Hours created the perfect environment for stakehold‐
ers to feel safe asking these sorts of questions. After this, we saw engagement
increase in our Slack help channels as well, because folks had built more of a
rapport with the team and felt more confident that their concerns would be
addressed.

Experiment with new vectors for cross-team communication and stake‐
holder management that take psychological safety and sociological patterns
into account. I encourage you to find ways to bring humanity back into engi‐
neering conversations; make room for failure and asking dumb questions in
a safe space. Remember that Slack requires some amount of professionalism,
but Office Hours creates space for creativity and unstructured conversation,
regardless of logical flaws. In our Office Hours, people stopped by just to say
hi, which allowed for serendipitous conversation, innovation, and room to
learn and grow.

97 Things Every SRE Should Know112

Building Tools for Internal
Customers that They
Actually Want to Use
Vinessa Wan
New York Times

At NYT, no one is required to use my team’s tools or follow our processes.
Instead, if we want to win teams’ hearts, we must build tools they want to
use. To do so, we adopted a product management view that actively sought
feedback in how teams perceived the value of our tools and processes.

Although quantitative metrics are vital, qualitative feedback can be over‐
looked in internal tooling. How do you find out about user—or, as you
should start calling them, customer—satisfaction? You may not be able to
collect the same scale of user-behavior data as external products can, but
luckily, qualitative feedback from your colleagues is a great way to address
that. Being able to reach out to someone in your company directory easily is
actually a major advantage.

To start, identify desired outcomes. Are you trying to understand a problem
space? Looking for feedback on a design? From there, we use a feedback pro‐
cess that includes a survey and follow-up interview process. A lot of advice is
out there for how your team can gather feedback. Here’s my take.

When building a survey, treat it like a product. Keep the user experience cen‐
tral in your survey design. The majority of questions should be multiple
choice. Resist temptation to have multiple open questions such as, “Why did
you score that way?” Before you send it out to a wide audience, test your sur‐
vey to make sure it is easy to understand and complete.

Anonymous feedback, especially from your colleagues, tends to be the most
honest. You can use other questions, such as job function or team, to ensure
that you have a balanced response. For example, our first question gave
respondents the option to leave their name if they were interested in talking
with us. This took the pressure off respondents having to write detailed

113

feedback and helped us build a base of people that were interested in sharing
their experiences.

A survey is not a substitute for a conversation, however. Next, you should
conduct user interviews. List your user types. Making sure that you have
solid representation will help ensure that you are accounting for things you
may not expect, as well as for blind spots.

Write out a certain number of open-ended questions, but watch out for lead‐
ing questions. During the interview, refrain from interrupting the inter‐
viewee. Once they finish speaking, ask the interviewee to elaborate further
on a point made. Each interview should have a facilitator and a scribe. Lever‐
age your team as much as possible—our engineers volunteer to lead or scribe
user interviews. Not only did this allow us to interview more folks but the
team helped make improvements to the process.

Once you’re done, synthesize and analyze the results with your team. Now, a
caveat: take findings with a grain of salt. One interview does not mean you
should upend your current plans. Share your results and plans. If you are
trying to drive culture, it’s important to demonstrate that you’re not just lis‐
tening but also have plans for change (or a reason you can’t do something). It
also helps to reference feedback-based improvements in future calls for
feedback.

As a final piece of advice, remember that feedback loops should be regular
and consistent. This isn’t a one-and-done process, but one you continually
iterate and build upon. And always question whether your processes are
serving you.

97 Things Every SRE Should Know114

It’s About the Individuals
and Interactions
Vinessa Wan
New York Times

Individuals and interactions over processes and tools.
—The Agile Manifesto

It’s not that the tools or the processes don’t matter, because they do, but often
the biggest obstacle to creating a DevOps culture is ourselves and how we
work with our teams.

As part of our data center migration effort in 2017, our leadership decided
that teams would now be responsible for their own infrastructure. At the
time, our centralized infrastructure team was largely viewed as a blocker for
teams. Some of our larger application teams lacked skill sets and resourcing
to migrate and build their applications in the cloud, so we started to help
them. In some cases, this was us doing the work, actually sitting with their
teams. Thus began our engagement model.

Early on we realized that for teams to be successful in the long term, we
couldn’t just do work. In particular, if SREs are constantly engaged with
other teams, what about the SRE backlog? As a result, we adopted a shared-
goals model. This helped us achieve a balance between reducing the automa‐
tion backlog and engaging with other teams.

A shared goal was when we would collaborate with a team to build out fea‐
tures for their use cases or figure out a problem of which they would be an
early adopter. The engagement was more about giving dedicated guidance or
embedding with a team to help it on a project such as test automation.

After a few engagements, we built a process that allowed us to set up these
partnerships for success. At the beginning of the engagement, we defined
what success would look like and how we’d measure it. This goal would be on
both teams’ roadmaps.

115

We then set expectations of how the joint execution would work. For
example, we wanted to make sure that our work would be a combination of
guidance and building tooling that the team could use. We also spelled out
who would have roles and responsibilities for things like ticket writing and
how we’d keep updated on progress. For a more detailed explanation of how
this model worked, I highly recommend reading my colleague Prashanth
Sanagavarapu’s essay in The Site Reliability Workbook (O’Reilly, 2018). This
may seem heavy-handed, but it eliminated confusion and saved time.

The engagement model also created some nonobvious benefits. By working
with teams on tooling, we were sure it could work for them in the long term.
It also gave us more insight into how different teams worked and used our
tools.

These engagements were very effective, but it should be noted that they took
a significant effort. These types of investments are very useful for teams in
the initial stages of major efforts and can be reduced over time. We now limit
our engagements to larger strategic efforts that involve multiple teams.

Remember, it’s not about copying a process you read in the book or rolling
out a specific tool. Reliability is a team sport. By focusing on our interac‐
tions, we helped build trust and empathy on both sides. Teams that partnered
with us greatly appreciated what we did and were more willing to work with
us in the future.

97 Things Every SRE Should Know116

https://oreil.ly/bkoWz
https://oreil.ly/bkoWz
https://oreil.ly/PneKu

The Human Baseline
in SRE
Effie Mouzeli
Wikimedia Foundation

There’s no such thing as an SRE school. Site reliability engineering is a
unique profession because the requirements to become an SRE are very
broad, and the skills are not part of the curriculum of the average computer
science degree. Organizations hire SREs with the assumption that they
code well, have deep understanding of systems, know monitoring and alert‐
ing, can run any service, can debug production issues, can improve perfor‐
mance—and pull a rabbit out of their hat.

To have such range may seem superhuman, but instead requires a deep curi‐
osity for how things work as well as the ability to learn from here and there.
To be fair, it’s unrealistic to expect everyone to know all that right from the
get-go; we all come from different backgrounds and learn differently. Few of
us can be deep experts among so many domains, so instead, we should rely
on one another to keep leveling up each other’s skills.

Leveling up should be a synthesis of mentoring and personal effort. Mentor‐
ing can have a profoundly positive effect on teams, improving the knowledge
of both the mentor and mentee and creating stronger bonds. However,
because mentoring requires time, energy, dedication, and, of course, good
will, it is considered additional work. It usually doesn’t count on perfor‐
mance reviews, is not recognized as delivering impact, and is not included in
our team’s planning. As a result, mentoring others becomes extracurricular,
and leveling up ends up too often being a solo sport, left up to the person’s
discretion to achieve it.

It shouldn’t be a solo sport, and one shouldn’t feel alone in this. I believe that
mentoring can be woven into day-to-day work. Here are some simple tactics
to experiment with:

117

Take the long way home
Rather than assigning tasks to engineers who will perform them faster,
consider having them assigned to engineers who have more to gain from
it, with proper support/guidance from the team.

Mistakes and imperfections are okay
Within reason, it is okay to let people make mistakes and then let them
fix them. Furthermore, it is also okay to accept an average solution that
works and let the engineer improve it over time.

Pair systems engineering
This would be the systems equivalent of pair programming, when two
SREs perform a task together by, for instance, sharing the same screen.

Stepping back
During an incident, depending on severity, more senior engineers can
step back and let the rest of the team investigate. Incident heroism pro‐
duces results, but it may also overshadow the rest of the group and pre‐
vent the members from becoming confident enough to step up.

Integrating mentoring into a team’s day-to-day work is a building block that
can make it more inclusive and help it thrive.

When running services, we use baselines as indicators that our systems are
performing well, but baselines are not limited to our production; they extend
to the humans running it. The human baseline is a combination of soft skills
and technical skills a team agrees a candidate should own to join it. Every so
often we want to hire people who don’t quite tick all the boxes, but at times,
it might be better to invest in people we feel have prospects than to waste
hours interviewing looking for unicorns. When we do so, we need to have
the framework that will help new members get to the human baseline of the
team and then above it.

Over time, skills can be improved with a little help from our team. Is any‐
thing more productive and efficient than a team that cares about each other?

97 Things Every SRE Should Know118

https://oreil.ly/U6bti

1 See You See Teams, I See Product, page 174, also by this contributor.

Remotely Productive or
Productively Remote
Avleen Vig
Facebook

As you switch from local or distributed to remote teams,1 shifts in productiv‐
ity can seem paradoxical. The assumption is that, away from the distractions
of the office, people will skyrocket in productivity, whereas among remote
teams, overall productivity can increase, but individual productivity might
fluctuate or drop.

How does this happen? In every organization, critical work and less urgent
work must be done. Productivity is the result of both of those types of work
receiving attention. As individual productivity drops, people tend to refocus
on one type of work or the other. If you’re measuring success on the number
of high-priority tasks or projects that hit their milestones, you may well see
the overall impact of your teams go up.

Remote ICs (individual contributors) also have opportunities to be produc‐
tive differently than they were before, and time-shifting work or breaking up
their day is one good example of this. For example, ICs who are several time
zones ahead of their colleagues can take advantage of quiet time in the morn‐
ing to work on tasks with fewer interruptions.

A key element to keeping productivity high is communication and collabora‐
tion, and these are very human-centric. They require engaging with other
people, listening, internalizing, and responding. The internet has considera‐
ble information about how to do video conferencing well or how over-
communicating as a remote IC is important, but very few discuss the
importance of social bonds.

Trust between members is an integral part of any successful team, and that
trust is supported by strong relationships. In the pre-COVID-19 world, that
happened when ICs sat, solved problems, and spent time together, learning

119

about each other. From my own experience, 1–2 weeks in the same location
was enough time to let individuals be apart for up to 3 months and still
maintain the same levels of trust and collaboration. After 3 months, those
relationships would start to weaken and require more time together to
refresh them.

In our new world, with more organizations turning to remote teams and less
travel overall, this becomes significantly harder. We have to find ways to keep
those relationships strong between teammates, on both a professional and
personal level. Some suggestions include:

Video conferencing social hours
Have people get together at the same time to talk about things other than
work. Discuss special occasions, personal milestones, and events and
make sure people are handling the increased isolation from their team
well.

Multiplayer games
Many are available, and some are free-to-play and widely accessible.

One-on-one conversations while having dinner
These naturally provide a nonwork situation where people can talk
about things other than work.

As a senior engineer on a large team, I spend a significant amount of time
each week having 10–15-minute one-on-one catch-ups with other engineers.
The key here is to find opportunities when we can engage each other in a
social context.

The move to remote work may leave some individuals feeling less productive
and getting less done than they are used to. It’s important for us not to have
knee-jerk reactions to this and realize that it’s actually okay. Your organiza‐
tion should be constantly evaluating what more-important work it can be
doing, making sure to focus on that. Some additional, less-critical work may
fall by the wayside as a result. Accept and embrace this. If work that wasn’t
vital is being left behind while critical work is being completed as well or bet‐
ter, then things are trending in the right direction.

97 Things Every SRE Should Know120

Of Margins and
Individuals
Kurt Andersen
LinkedIn

Problem solving, beyond rote mechanical approaches, requires creativity,
and creativity requires free space in which to take place. Understanding,
empathy, and compassion all require the capacity to go beyond the con‐
straints of immediate personal circumstances. That extra free space, that
extra capacity is margin. Margin is the space between our load and our
limits.

On a personal level, margin is critical to survival. One of the most funda‐
mental aspects of life is breathing, and breathing only happens when the
muscles of the diaphragm and rib cage make space—inflating the lungs and
drawing air in. Constrictor snakes don’t kill their prey by squashing them.
They kill by depriving the victims of the ability to breathe by cinching tighter
and tighter around the body until there is literally no room to breathe.

The pandemic and social disruptions of 2020 have highlighted the impact of
environmental stress for nearly everyone. It is a powerful illustration of the
concept of allostatic load, a generalized stress response in the face of envi‐
ronmental uncertainty. As people have had to cope with increased environ‐
mental stressors, their capacity for other pursuits—their margin—has been
degraded. As uncertainty persists longer or more intensely, people’s mental
and physical reserves are more deeply depleted.

To counter this environmental uncertainty, it is important to undertake
renewing activities: breaks, changes of scenery, and exercise. Just like the
rhythmic aspects of breathing, engagement and disengagement from work
and attentional efforts is important for mental and physical health. If you
don’t create and maintain personal margin, you will be on a path to burnout.

On the flip side from the negatives of burnout, you can find the benefits of
creativity that thrive in semi-constrained spaces. Allowing space for the
unconscious mind to generate insights is why breaks and changes of
environment can be so valuable. Many instances of dramatic insights have

121

https://oreil.ly/5DEOp
https://oreil.ly/Zgrqr
https://oreil.ly/HsQpe

1 Tim O’Reilly (2020). “Welcome to the 21st Century: How to Plan for the Post-Covid Future”.

resulted from people taking their mind off a particular problem and finding
insight from another source, such as Archimedes’ “Eureka!” insight into how
to measure the gold content of the king’s crown.

Recent neuroscience research has hypothesized that thinking intently about a
particular problem can lead to a phenomenon similar to the Troxler effect, in
which the focus of the fixation disappears. Taking a break can allow the brain
to shift perspectives. Take time for yourself to think. Your personal reliability
depends on the space you make to ensure effective thinking.

In the practice of site reliability engineering, we have a key concept referred
to as service level objectives—an explicit target for how a service responds,
but potentially even more important is the extra part that is left over. Often
referred to as the error budget, this leftover part is where or when the service
does not meet the objective, but it’s much more helpful to think about this as
the learning budget.

We can extend this concept to ourselves. Just as incidents are unplanned
investments in understanding your systems, the learning budget is where
you get to explore new, creative approaches. The key to resilience is estab‐
lishing and nurturing this adaptive capacity that lives in this space of the
learning budget.

Lawrence Wilkinson, who works in the field of scenario planning, stated (as
quoted by Tim O’Reilly1): “‘robust’. . .means flexibility, adaptability, bias to
learning, et al., [as well as] ‘resilience.’ . . . [O]ften hardest . . . is the need to
sacrifice at least some efficiency to create slack, the elbowroom with which to
respond. . .that is to say, the capacity to be effective.”

It may be hard, but it’s also critically important.

97 Things Every SRE Should Know122

https://oreil.ly/L9k2H
https://oreil.ly/3lD0Y
https://oreil.ly/ViH-H

The Importance of
Margins in Systems
Kurt Andersen
LinkedIn

Margin is a tool for handling uncertainty and one of the multiple objectives
that needs to be balanced when managing a technical or human system. In
fields ranging from psychology to mechanical engineering to queueing
theory and reliability engineering, the ability of a system to adapt (and in
some cases, even perform at all) is critically dependent on the time and space
buffers that are part of the system. Just as I’ve discussed the value of margins
for individuals, margins are important for systems too.

Margins must be included in the design of functional systems to account for
uncertainty and the additive effect of individual system tolerances. Com‐
puter networking is a great example of where the margin calculations are a
standard part of the practice. Ensuring that every network link in the path
has excess capacity beyond the expected bandwidth usage is a critical part of
managing network performance. The older rule of thumb was to upgrade
any links that were averaging 50% utilization; part of that was to account for
lead times in the procurement process, but part of it was to handle unpre‐
dictable peaks in instantaneous traffic loads gracefully.

Newer guidelines, along with measures such as QOS (quality of service) pri‐
oritization, have allowed network engineers to push the average utiilization
into the 70–80% range as long as they have good understanding of the traffic
that transits their links. With less certainty, higher margins are required. If
average utilization grows much beyond these levels, levels of latency and
packet loss grow rapidly beyond acceptable levels.

The same fundamentals of queuing theory that lead to the need for margin
in network engineering apply across many domains. An extensive body of
research is related to scheduling operating rooms in hospitals, seeking to
determine the optimal balance of utilization in the face of patient cancella‐
tions, uncertain procedure durations, and very expensive equipment and
personnel resources. If you have encountered unacceptably long waits for a

123

1 Avery Pennarun (2018). “The Math behind Project Scheduling, Bug Tracking, and Triage”
Avery Pennarun (2017). “SimSWE Part 1: Indecisiveness Simulator”.
Avery Pennarun (2017).“SimSWE Part 2: The Perils of Multitasking”.

2 Will Larson (2019). “Why Limiting Work-in-Progress Works”.

doctor’s visit, it is probably because they were overscheduled, and the lack of
margin caused latency in servicing your needs.

Like networks and operating rooms, teams also experience problems when
they are overscheduled. This is the core principle in Dominica DeGrandis’s
Making Work Visible. Loads on teams are often neglected. Without a full pic‐
ture of the workload for the team, they (or their management) can’t properly
assign task work while preserving the necessary margin for learning and
handling unexpected changes.

Avery Pennarun1 and Will Larson2 has each developed simulations of how
team productivity (in the sense of value delivered to the end user) fluctuates
in the face of changing goals and too many tasks. These simulations highlight
the importance of appropriate amounts of margin. In the face of greater
uncertainty, more margin is required to keep the team producing effectively.

How much margin depends on the system. Without enough margin, a sys‐
tem will bind up when the slightest disruption causes widespread systemic
failure because there is no adaptive capacity. With too much margin, a sys‐
tem fails to achieve maximal productivity because work is dissipated into the
gaps within the system. As we work with complex, distributed, sociotechni‐
cal systems, we need to reevaluate our balance between constraints and
degrees of freedom constantly to optimize the output of our teams and
systems.

97 Things Every SRE Should Know124

https://oreil.ly/0sGHL
https://oreil.ly/W89Jt
https://oreil.ly/aTbvD
https://oreil.ly/Vbv8d

Fewer Spreadsheets,
More Napkins
Jacob Bednarz

Napkin math is a process of performing calculations that provide an answer
within a degree of magnitude of accuracy when you’re unable (or don’t need
to) gather exact specifics, instead relying on using simplified assumptions.
This is useful for confirming the viability of an option or narrowing the
range of possibilities without spending hours or days on more complex
calculations.

The kinds of estimation problems well suited for this are formally known as
Fermi problems. A famous example estimates the number of piano tuners in
a given city.

Assume that Chicago has a population of three million people, and each
household contains on average two people. Say, one in 20 houses has a piano,
and that it needs to be tuned only annually. Guess that piano tuners work
eight hours per day, five days a week for 50 weeks per year (so, 250 days), and
that each piano takes two hours to tune.

From here, we can quickly scratch out the following:

• Assume Chicago has a population of ~3,000,000
• Chicago has ~2 people per household
• (1,500,000 households) / (20 households with a piano) = 75,000 pianos

in Chicago
• (8 hours per day) / (Tuning takes 2 hours) x (250 days per year) = 1000

pianos tuned per year
• (75,000 pianos in Chicago) / (1000 piano tunes a year) = 75 piano tuners

in Chicago

125

Of course, there are most likely not 75 piano tuners in Chicago; however, we
now also know there are probably not 1000 or even 10,000 piano tuners
roaming the Windy City.

Let’s apply this beyond piano tuners.

For instance, you want to know how long it would take to move data from a
data center located on the US East Coast to another one located on the West
Coast. Here, we can use a simplified representation:

• 60 ms (per gibibyte [GiB]) for the network trip
• 200 ms (per GiB) for the disk read (to send)
• 1 second (per GiB) for the disk write (to receive)

Using 1.5 s per GiB as the combined simplified time span, you can multiply
that by the size of your data store and you have your answer! Now, this result
won’t be exact, but it gives an estimate within an order of magnitude of the
actual result—more than enough to determine the viability of this approach.

You’re starting to see the benefits of gathering a high-level calculated esti‐
mate because its application is broad and allows you to use seemingly impos‐
sible calculations to end up with an estimate within an order of magnitude of
the actual answer.

The ability to move fast here is crucial because it means that you can make
multiple calculations quickly to try out a range of options. This keeps the
momentum going that is necessary for brainstorming to clip along without
getting bogged down by granularity.

So feel free to start stocking up on napkins.

97 Things Every SRE Should Know126

Sneaking in Your DevOps
Deliciously
Vinessa Wan
New York Times

People are surprised when I talk about DevOps at the New York Times. I
mean, we’re over 100 years old. How did we do it? Driving culture change
means you have to be viciously devoted to the cause. Taking every opportu‐
nity to champion the value, even if it means being sneaky about it. Any par‐
ent who snuck vegetables into their child’s food knows what I’m talking
about.

Maybe this seems deceptive. I mean, shouldn’t we just be open that we’re all
going to be committed to reliability and just have our leadership know to
prioritize it? Sure, in a perfect world, that’s true, but driving culture change
means you have to be not just passionate about the vision but also patient
enough to know that folks will need training wheels for a while.

A DevOps culture means it’s ingrained in everything we do. It’s not just treat‐
ing it as something special, but having it become a part of our DNA. This is
why we shaped our election’s readiness efforts—including that election nee‐
dle everyone on the planet has heard about—to focus not just on a single
night, but rather on how to lay groundwork for creating an operationally
mature organization.

Instead of listing applications, we started with identifying key workflows, or
key user experiences. Our users, or internal customers as we refer to them
internally, are the Newsroom, Readers, and Business workers. A workflow
example is, “Newsroom can publish an article to our website.” Next, we
would identify the systems required for each workflow. Systems that support
a function can span multiple teams and even departments, but it shouldn’t
matter. Creating this view allowed us to focus on the overall experience of
customers versus just a specific team. It also made sure everyone in the com‐
pany was on the same page.

Each workflow and system in that workflow then was tiered to a level of crit‐
icality. We created expectations for each level of criticality. Combining this

127

with a workflow view allowed us to view resiliency at both workflow and sys‐
tem levels. No longer would individual teams have to bear the burden alone.

We conducted architecture reviews with teams. This is a detailed evaluation
of architecture to identify any at-risk areas, inventory runbooks, and dis‐
cover how systems work together.

We led teams through an operational maturity model rubric that detailed
practices such as service provisioning and decommissioning or capacity
planning. This highlighted where teams can focus their energy and have the
greatest impact on the reliability of their application.

We conducted performance tests on production periodically to measure how
systems and teams handle increasing loads or various scenarios. Afterward,
we held a learning review to walk through the timeline and identify how to
improve.

If all of this doesn’t sound particularly shiny, that’s partly the intention. Like I
said, we’re the vegetables—but hey, vegetables done right are delicious.
Sometimes vegetables are the star, and sometimes they are better as a stand‐
out backup singer.

I think not taking center stage in certain efforts and instead partnering and
guiding those that are is a big factor in driving change through influence.
My team is the stage crew of our site and apps. Still, I don’t measure success
in just one event—we have so much further to go and learn as an organiza‐
tion—but the aforementioned practices and processes allow us to focus
beyond an event.

Our success is when you don’t know we’re there. In this very news-heavy
period, our site continues to provide a reliable user experience that matches
the quality of our journalism. Not bad for over 100 years old.

97 Things Every SRE Should Know128

Effecting SRE Cultural
Changes in Enterprises
Vanessa Yiu

Most well-established organizations have an ingrained set of practices, tools,
and processes. Bringing on SRE means overcoming inertia and requiring a
substantial investment of time to educate as well as continuous reinforce‐
ment of practices and behaviors.

Change is hard, especially in large organizations. Trying to change too much
too quickly can result in confusion and lead to skepticism. We are creatures
of habit—a sudden change of routines and operating outside of our comfort
zone typically attracts initial doubt. Most cultural changes are also iterative
and unlikely to be perfect from the get-go, so if people come across a bad
experience or if something did not work out as intended the first time
around, a negative perception can quickly propagate across the organization.

To avoid this, focus initially on the few most critical behaviors to adapt. In
other words, find the key blockers to successful implementation of SRE at
your workplace. If a shared responsibility model does not exist between
developers and SRE, for instance, then perhaps start here, because that is
foundational to getting SRE right.

After identifying your focus area, decide how best actually to facilitate the
change in behavior. It is no good to want all services to have SLOs when the
company has no such tooling, or to mandate blameless postmortems when
forums where incidents are discussed do not exist. It is important to identify
where the gaps are and then build a clear roadmap to lay the required foun‐
dations first. If you have effective tools and processes that are in line with the
behaviors you would like engineers to adopt, this will eventually become
routine and naturally lead to a change in thinking as well as in culture over
time.

Cultural change is about people, not systems, so it cannot be approached
with the same mindset as building software. A team of rock-star SREs does
not guarantee success. In addition to hiring and training SREs, identify

129

culture carriers in your organization who are adept at empowering others and
building trust. Teach them the skills and help them spread awareness and
knowledge across the organization. We are likelier to embrace change when
observing and working with those who lead by example than by receiving
missives from an ivory tower.

People at all levels need to participate, because it is unlikely to be just one
person’s responsibility or something that one person can get right when it
comes to cultural shift. Top-down mandates are rarely successful in driving
long-term behavioral changes across large organizations. Executives, how‐
ever, do play a huge part in ensuring that the organization understands the
change’s importance and maintains focus, and regular top-down communi‐
cation is key to achieving this.

Providing transparency and identifying the correct incentives are critical to
the success of any large-scale change program. People need to see and believe
the value for changes to stick. Be thoughtful about which results matter and
which indicators reflect successful changes in behavior.

For example, if you want to encourage postmortems to curb repeating issues
and mitigate risk, the true indicator of behavior change and success will be
whether engineers are following through and closing out action items. Meas‐
ure these and agree on the incentive structure to reward model behaviors,
such as teams that use error budgets to drive decision making, or those who
foster a blameless culture across the organization.

When everyone buys into and agrees to invest in a strategy, there can be the
belief that getting this right will make the organization better, and everyone
benefits as a result. Establishing an SRE mindset and its practices are founda‐
tional to the long-term, sustainable success of any SRE team.

97 Things Every SRE Should Know130

To All the SREs I’ve Loved
Felix Glaser
Shopify

We’ve all come across an application pushed out of the door with questiona‐
ble reliability. It makes our lives tougher when, inevitably, the application
experiences its first outage and we are called in to help make the application
more reliable. We aren’t surprised by this but wish we would have been
involved in the design and planning of the app and made reliability a first-
class citizen. It’s so avoidable—and it can wear us down.

I am not an SRE—well, not anymore. I returned to my first passion, security,
drawn to strengthening the security of systems, protecting our users’ data,
and keeping the bad guys out. The change in perspective from switching
teams led to an insight: security is to SRE what SRE is to product teams. We
are here to support you to keep your systems secure, up and running, and
ultimately reliable. In a way, we are your SRE team. Yet, you so often treat us
the same way the single-minded product team treats you.

I’ve heard the complaints. You feel like we’re slowing you down by being
paranoid and always thinking of the worst-case scenario. What makes it
worse is that we don’t even have good data to convince you it’s worthwhile.
It’s not like we can say, “You need to update this library or else the servers
will be hacked.”

Scaling up servers for the next DDoS (distributed denial of service) or flash
sale is very tangible. See how many connections a single instance can handle,
see how many people tried to connect the last time, and you just scale past
that. As a security engineer, I have no way of pointing at that one CVE
(Common Vulnerabilities and Exposures) piece that you need to fix or else.
As long as you haven’t been breached, there is no way to tell whether you’re
secure. There is no way to prove that a system is secure.

It’s a thankless job; security teams aren’t perceived as bringing the same value
to a company as the SRE team, mostly because our work is nebulous. We
have some great tools and techniques, including keeping operating systems,
VMs (virtual machines), and containers updated; installing security patches;
scanning the company’s networks and IP (internet protocol) to detect all the

131

software someone took online without consulting us; encouraging develop‐
ers to update their dependencies; fuzzing their code before it goes out; and
making sure permissions aren’t over-granted. So we do the best we can,
although if we do it well, no one will notice.

So what would make a production security engineer’s life easier? Giving
security the same room and attention you wish product teams would give
SRE. Keeping us in the loop from the start. Communicating changes in infra‐
structure as early as possible. Involving us in the decision making. Not run‐
ning an old operating system on a VM somewhere that you forgot about.
Clicking Merge on that Dependabot PR (pull request) in a timely fashion.
Trusting our recommendations. Ultimately, making us part of your organiza‐
tion by integrating us into your daily work and decision making. This has
obvious benefits for you, because a hacked system might go down and cause
a lot of downtime—and I would hardly call that reliable. So the next time we
come to you with a seemingly paranoid recommendation, remember that we
care deeply about keeping our customers safe and everything up and run‐
ning. Don’t let security become an afterthought!

And always remember: treat your security team the same way you wish that
one product team treated you.

97 Things Every SRE Should Know132

1 Brooks, F. P. “No Silver Bullet.” Essence and Accident in Software Engineering. Proc. IFIP Tenth
World Computing Conference, (1986), 1069–1076.

Complex: The Most
Overloaded Word in
Technology
Laura Nolan

Both software engineers and systems engineers use the word “complex” as a
specific term of art. Software engineers use it in several ways, distinct from
the systems meaning. Software engineers and systems engineers (SREs, pro‐
duction engineers, systems administrators, DevOps practitioners, etc.) are
overlapping groups of people who work together. We all need to understand
which meaning is in use at any given time so we can communicate clearly.

Complexity has been the enemy of the software engineer for decades now.
Fred Brooks’ classic essay, “No Silver Bullet,”1 divided software’s complexity
into two parts: essential complexity and accidental complexity. Essential
complexity is related solely to specifying the problem and how it should be
solved. Accidental complexity is related to the details of implementation. The
overwhelming majority of the work of technology operation is about acci‐
dental complexity.

However, this doesn’t tell us what software engineers mean by complexity.
Fundamentally, complexity is that which makes software difficult to under‐
stand fully and to reason about correctly. Moseley and Marks’ paper, “Out of
the Tar Pit”, discusses several sources of complexity. The biggest, and hardest
to deal with, is state. State influences the flow of control of a program, but
the number of potential states that a piece of software can be in increases
exponentially with the number of variables.

Other major sources of complexity are sheer code volume and the fact that
programs, unlike complex physical structures, cannot be visually inspected.

133

https://oreil.ly/0-iuA
https://oreil.ly/0-iuA

Mental models of the program must be constructed from the source code.
This can of course be easier or harder, depending on how the code is
structured.

Systems engineers tend to have a completely different idea of complexity,
stemming from systems theory. Complex systems have particular character‐
istics: multiple interacting parts, system state (i.e., a memory of some kind),
and feedback loops. They display emergent phenomena, have nonlinear rela‐
tionships (small changes in one part can lead to large deviations in overall
system behavior), and tend to be prone to cascading failures or vicious
cycles. Complex system behavior cannot be predicted reliably.

All computing systems are complex systems. Even if a system is running on a
single physical machine, you are still dealing with the interactions of multiple
pieces of software, all of which are likely complex systems in their own right,
running on complex hardware. Each running program may have multiple
threads of control, state, interactions with the operating system and other
programs—even if not explicitly, then through shared resources.

This systems theory definition of complexity is the one often used by systems
administrators, SREs, and DevOps practitioners. Software engineers, on the
other hand, mainly think in terms of code structure, interactions between
modules, and interdependencies in their code bases. Software engineers’ pri‐
mary concern is the difficulty of making correct changes without introduc‐
ing errors. Systems engineers’ primary concern is stability of the deployed
software in production.

This is why, when you ask a software engineer to promote simplicity as part
of their job description, they look for opportunities to separate concerns and
reduce coupling in their code base to refactor to well-known design patterns,
create better-defined interactions between modules, and remove unused
code. When you ask systems engineers to do the same thing, they often look
for ways to control extremes of the system’s behavior (using load shedding
and circuit breakers, for instance) or to make elements of the system more
uniform.

The two kinds of complexity that we discuss here are quite different, but they
do also have one major thing in common: both software complexity and sys‐
tems complexity make the task of understanding and predicting behavior
impossible.

97 Things Every SRE Should Know134

PART IV

Ten to Hundred

The Best Advice I Can
Give to Teams
Nicole Forsgren
GitHub

If I had to say one thing, it would be this: integrate your teams.

That’s it. That’s the advice. Work together. Talk more.

If there’s one thing we’ve learned about developing and delivering software
over the past decade (or more), it’s that more communication and fewer
silos is key. It really is all about information flow. It should come as no sur‐
prise that this applies to SRE teams, too. Carving off another special team
simply creates a new silo, and their work and influence can’t reach those who
need it most. By separating the SRE team from the development teams they
support—sometimes by creating a Center of Excellence—you end up causing
more problems than you solve. Separating SRE from dev teams leads to a few
problems, including:

Elitism
I get it; it feels good to be part of the special club, but by isolating exper‐
tise, you simply create a bottleneck and limit the ability for others to get
work done. This can lead to everyone coming to you for everything in a
case of learned helplessness, or coming to you for nothing because the
process is too hard. Neither of these is good because they remove you
from important, high-priority work.

Knowledge constraints
When one central group owns and hoards all the knowledge, it becomes
harder to share, mentoring is more difficult, and best practices become
more difficult to scale.

Separation from the work
A big chasm between SREs and the teams they support can feel like
someone dictating how things should be with a translation layer missing
in between. If you never work with the development teams, it can be
hard to get a real feel for their work. They can also have a hard time

136

grokking the reliability and scalability issues that keep bouncing back to
them; their environments just fundamentally behave differently.

Sponsorship
Office politics aren’t always fun, but this is an important piece to remem‐
ber: SRE is typically executive-driven and -sponsored, making the CoE
structure a risky move. If your sponsor leaves the company or no longer
sees the value in what you do, you may be left without strong connec‐
tions to the rest of the company, and your function may be eliminated.
That’s not good for you, your teams, or your users.

What are the best ways to integrate? Of course, find a way to do this that
works best for your organization. One solution can be embedding SREs into
dev teams, with regular meeting cadences to share work, best practices, and
patterns that are cropping up around the business. (By fostering this loose
structure sometimes known as a Community of Practice, you’re getting the
best of both worlds: a shared community without the costs of silos.) How‐
ever, there aren’t always enough SREs to embed in every dev team. (Who are
we kidding? This is the dream.) Some organizations solve this by having
their SREs do rotations through dev teams and sometimes by having devel‐
opers do rotations into SRE.

By working together and being partners in the software delivery process,
SREs can help organizations of any size focus on the users’ perspective,
prioritize the right work, and adopt systematic approaches to improving
reliability and availability. At the heart of it all is communicating and
collaborating.

Collective Wisdom from the Experts 137

Create Your Supporting
Artifacts
Daria Barteneva and
Eva Parish
Microsoft
Squarespace

Don’t underestimate the power of documentation to support you and your
organization during SLO implementation. Your goal is to break down SLO
creation into three phases: define the SLO, collect SLIs, and, later, use the SLO.
Here is a list of the documentation we recommend at this stage:

One-page strategy document
This will be the most important document in the crawl phase. What are
you trying to accomplish? Why? How? This will be the very first docu‐
ment you share with people when they ask, “What is this effort all
about?” Make it short enough for anyone to read in less than 10 minutes.
It’s critical that you get this document right. Use this book as a resource
to help you articulate why your organization needs SLOs: what it will get
out of creating SLOs, and how SLOs will improve service reliability for
your users and help your engineering teams. Make sure you review this
document with your leadership and have its sign-off and total support
for the strategy you plan to communicate across your organization.

Two pages defining SLOs (high level)
Next, you’ll need a more detailed (but still brief) document that explains
what an SLO is, gives examples of good SLOs, and tells the reader how
they can get started. You don’t want to scare your readers by asking them
to read an entire book about SLOs just to understand what an SLO is.
Make it easy for engineers to get an idea of how to implement SLO-
based approaches and try to build their interest.

FAQ
Collect a list of the questions you expect people to ask as they begin their
own SLO journeys, and compile them into an FAQ document. To start
with, you might include questions like:

138

• What if my user is another service? Do I still need to care about
SLOs?

• What if my service’s dependencies don’t have SLOs?
• How many SLOs should a service have? How many SLIs?

Defining SLOs for your service, step by step
You’ll need a document that explains, step by step, how someone in your
organization can define an SLO (the first phase of the SLO creation pro‐
cess). Don’t talk about instrumentation and metrics collection here;
focus on the high-level process. You might want to share an SLO defini‐
tion template that teams can use.

Instrumenting your service to collect SLIs
As a follow-on to the previous document, this document will give step-
by-step guidance, with examples, on how to instrument a service to col‐
lect SLIs (phase two). You can be very specific here and look at the
monitoring platform your organization uses to give examples of SLI
instrumentation for different types of services. For example, how would
you collect latency data and translate your metrics into SLIs, using per‐
centiles? How would you instrument a pipeline service to collect SLIs?
Give as many examples as you can and provide ready-to-use code snip‐
pets, making it easy for engineers to move forward with the monitoring
instrumentation step of the journey.

Use case
If you’ve already implemented SLOs for any of your services (or for the
example service you developed while doing research), write up the
details in a use case document to give your SLO early adopters a con‐
crete example of how this is done.

Don’t forget to define where all your artifacts will live—for example, a wiki
paired with a code repository—and make sure they’re discoverable and easy
to navigate to. The biggest mistakes we see across engineering organizations
are not taking the time to create well-structured and discoverable technical
documentation, and not demanding that documentation undergo the same
quality review process as code.

Adapted from the book Implementing Service Level Objectives: A Practical
Guide to SLIs, SLOs, and Error Budgets (O’Reilly).

Collective Wisdom from the Experts 139

https://oreil.ly/kAVJt
https://oreil.ly/kAVJt

The Order of Operations
for Getting SLO Buy-In
David K. Rensin
Google

As the person driving your team, organization, or company toward the
adoption of SLIs, SLOs, and error budgets, you will have to do a fair amount
of convincing. For some people, the basic arguments for SLOs will run
counter to the goals they have set for themselves and their teams. Others will
want to prioritize feature velocity ahead of reliability work, and still others
will doubt that the company is mature enough or good enough really to
adopt these principles and techniques.

It’s important to realize now that the benefits of adopting an SLO-based
approach will not be self-evident to everyone and that you will have to do
a fair amount of patient explanation. Let’s build a game plan to get everyone
on board. Like most things in engineering, the order of operation is
important.

Based on experience, here’s my suggestion for the order in getting buy-in:

1. Engineering and operations
Your first step is to get both the engineering and operations teams on
board with SLOs. This should be reasonably straightforward because
SLIs, SLOs, and error budgets offer real benefits to each group. Their
mutual agreement to the principles of SLOs is essential to getting other
teams on board. Note that I said principles. The implementation details
(error budget policies, SLO targets, etc.) will be negotiated later.

2. Product
Your next stop is probably your product managers (or whoever writes
the product requirements documents, or PRDs). The key argument you
are making to them is that this approach will give them better feature
velocity over time. They will want to know that engineering and opera‐
tions are on board, which is why they’re in step 2.

140

3. Leadership
Once the engineering, operations, and product teams have bought in, it’s
time to talk to your senior leadership. The benefits of this change
(greater release velocity, early insights into the user experience, a better
work environment, etc.) are obvious, but they will want to know that the
big three are in agreement.

4. Legal
Your next stop is the lawyers. You aren’t likely to meet much resistance
here if you’ve completed steps 1–3. They will be concerned (rightly so)
about what this change will mean to the public SLAs (answer: if they
aren’t already fielding lots of SLA violations, then these changes will have
almost zero effect and may present an opportunity to adopt more com‐
petitive SLAs; if they’re fielding more than they’d like, that number will
go down).

5. QA
This is your last stop. This is the group that will be most concerned
about what these changes mean for them. The important part of this
conversation is to keep the team focused on the skills they bring rather
than the organization they joined. Nobody is going to lose their job—far
from it. You’re not really there to convince the QA team. You’re there to
inform them (gently) that the company is moving to SLOs and that lead‐
ership, engineering, product, and operations all agree this is the right
thing to do.

You will need to talk to other groups—sales, marketing, customer support,
and so on—but they are consumers of this decision, not the implementers.

Adapted from the book Implementing Service Level Objectives: A Practical
Guide to SLIs, SLOs, and Error Budgets (O’Reilly).

Collective Wisdom from the Experts 141

https://oreil.ly/kAVJt
https://oreil.ly/kAVJt

Heroes Are Necessary,
but Hero Culture Is Not
Lei Lopez
Formerly Shopify

Building healthy, sustainable cultures requires understanding the difference
between heroes and hero culture. Heroes are made in crises, when people
perform extraordinary tasks to save the day, but that doesn’t mean you
should encourage the catastrophes to force people to become heroes—that’s
what hero culture does.

Think about when your SREs receive widespread praise. In my experience,
it’s usually in response to a nighttime incident when someone has sacrificed
sleep to save the day. Events like this garner praise from coworkers inside
and outside of engineering. Yes, we must recognize incident responders per‐
forming heroic acts, but it becomes dangerous when it veers into glorifying
this work.

True heroes spring to action when they are needed but wouldn’t wish anyone
else, including themselves, into those awful situations. SREs in a hero culture
push an organization toward an operations-versus-development mindset,
the very mindset site reliability engineering is meant to move away from.
Developers neglect sharing responsibility for their services with SREs. Why
worry about shipping the more reliable option when there’s an SRE on call to
save the day?

Hero culture therefore discourages preventive work. If work is only recog‐
nized when resolving an emergency, people are encouraged to focus on work
that presents itself as an emergency! This is when dumpster fire–driven
development kicks in: when something desperately needs to be fixed but isn’t
urgent, and buy-in from above only comes in once it’s a dumpster fire (i.e.,
has become an incident).

The motivation for heroes is internal because people want to do good work
during extraordinary times. In a hero culture, motivation comes externally
because people are only rewarded for being thrown into situations in which

142

they must perform extraordinary work to keep things running. We need to
recognize and reward preventive work.

When a problem can only be solved by a handful of people, and those people
feel that positive attention only happens when they’re the key to saving the
day, not only (ironically) do they become potential points of failure, but the
environment translates into a heavy on-call burden. As they reliably answer
the call to fix things, expectations build that they’ll fix things every time, and
the organization doesn’t work to avoid the issue. Constant firefighting is a
sure path to burnout.

Shifting back to heroes from hero culture requires finding new ways to rec‐
ognize work. One reason this is so difficult is that it’s hard to quantify when
something doesn’t happen. We have to make predictions.

I think about the Stoic practice of negative visualization, when you imagine a
version of your life with worse events, like losing your job, to realize grati‐
tude for your current situation. The premortem, a time to imagine what
would cause a project to fail, is a celebrated tool in SRE. Let’s use it after the
project has shipped, to celebrate the things that didn’t happen and the people
behind the nonevent.

Similarly, we must remind developers of what they can do to prevent or
reduce the harm from these situations. This should also be a tripwire
for leads to invest resources in technical debt. This is the perfect time to
engage everyone in a team effort to make things better for their shared
responsibilities.

Hero culture is easy to fall into, but an SRE mindset can be applied to combat
this. We can recognize that heroes do their best work as part of a team, and
true heroes don’t need a hero culture to do good.

Collective Wisdom from the Experts 143

On-Call Rotations that
People Want to Join
Miles Bryant,
Chris Evans,
and Suhail Patel
Monzo

At Monzo, on call is so popular that our rotations have a waitlist. Unfortu‐
nately, that’s not the case for most organizations. Our industry has resigned
itself to the idea that on call is painful and a necessary evil. Thousands of
developers and SREs put themselves through misery and burnout because it’s
part of the job. But must it be that way?

We don’t think so. Our efforts show that a well-designed, human-centric on-
call process pays off by having enthusiastic, motivated, and effective engi‐
neers on our rotation. How did we get here? By putting people first.

On callers are human. This is what makes on call so powerful; when safety
systems, resilient architecture, and automated remediation stop working, no
machine even comes close to matching the capability of a human to react
and adapt to a novel failure in a complex system. Unlike machines, humans
cannot withstand 24/7 uptime or sustained 100% CPU usage. Burnout sucks;
it sucks for the people around them, it sucks for the company losing a smart
and capable engineer, but it really sucks for the person. Effective on call is
also humane on call.

First, we incentivize people. Many on-callers aren’t paid at all; it is only fair
for companies to provide compensation for the added burden, responsibility,
stress, and disruption to normal life that the pager imposes. People are also
motivated by the opportunity to progress technically and learn much more
about the systems they work on. We encourage and reward this by including
on-call behaviors in our developmental and career-progression framework.

Second, we address the pain of being on call. Reducing the frequency of
being paged is an obvious starter; although we’ll never practically achieve
100% reliability (or there wouldn’t be a need for on call at all!), we can reduce
the number of noisy alerts and failures through automation and careful

144

https://oreil.ly/nYSBq
https://oreil.ly/XkEMr

monitoring design. We treat every page as an exceptional circumstance; if no
action is required, we tweak thresholds or even delete alerts.

Third, a good on-call experience starts from the moment someone joins the
rotation. A common experience is to be thrown in the deep end and
expected to handle things alone. Trial by fire is not a prerequisite for being
good on call; at Monzo, every on-caller shadows a more experienced engi‐
neer for a few months so they can practice incident response and gain con‐
text with lower expectations with a knowledgeable and confident hand to
guide them.

Last, strong on-call culture doesn’t happen overnight; instead, it comes from
constant effort and frequent iterations. We have a graveyard of bright ideas
we tried that didn’t quite make the cut; at one point, the on-call schedule was
manually handcrafted in a spreadsheet, like a jigsaw puzzle.

The best source for ideas to improve on call is the on-callers themselves. We
hold frequent retrospectives and reflect on ways we can make on call better.
Sometimes it’s nice to have a forum just to vent, but our most useful
improvements and ideas often have come from collaborative reflection.
Giving people agency and a chance to better things is a powerful way to
empower on-callers and improve their well-being.

You can, and should, improve on call. Our systems are becoming more com‐
plex yet critical, and increasingly we rely on humans to step in when automa‐
tion fails. Building happy, healthy on-call rotations is a superpower and one
that you, too, can gain by taking the time and effort to incentivize people,
reduce the pain points, provide mentorship, and iterate rapidly.

Collective Wisdom from the Experts 145

Study of Human Factors
and Team Culture to
Improve Pager Fatigue
Daria Barteneva
Microsoft

Noisy pagers can lead to pager fatigue, but noisiness is a subjective idea;
every team will have its own threshold of alerts for a noisy pager. There’s an
assumption that more must mean worse, which led me to wonder: does the
number of pages correlate to on-call satisfaction? To find out, I looked at an
organization of ~200 engineers divided into teams of between 10 and 20 peo‐
ple, with a mix of experienced and junior engineers. Engineers rated their
on-call satisfaction and provided verbose feedback about their experience.
The results surprised me. A higher number of pages didn’t correlate with on-
call satisfaction.

I looked at the teams that scored high in satisfaction and had a high number
of pages, and shadowed them to learn more about their engineering practi‐
ces. It turns out that human factors and team culture played substantive and
important roles in empowering engineers to feel more positive about their
on-call experience.

Pager fatigue is not about the volume of pages; one can have two pages but
no sense of agency to change the situation, whereas another could have 20
pages and thrive on driving durable improvements in the system. I found
that satisfied teams had engineers with autonomy and were empowered to
drive the change in the system where it mattered most. In addition, discus‐
sing ideas and celebrating achievements were consistent practices. This
resulted in a positive feedback loop, accountability, and collaboration oppor‐
tunities and helped to avoid duplication of work. Let’s review some engineer‐
ing practices from teams with higher on-call satisfaction:

146

• Technical literacy and hands-on experience were two of the big contribu‐
tors to on-call satisfaction. Successful teams had established effective
onboarding processes and invested in training and keeping their docu‐
mentation up to date.

• Good communication and collaboration had a force multiplier effect on
team efficiency. Successful teams had multiple weekly meetings that
were attended by 90% of team members together with the manager, who
actively contributed to the meeting but didn’t dominate the discussion.
This helped build the bottom-up culture with top-down support. Engi‐
neers reviewed incident trends, systemic problems, documentation
improvements, automation, and so on. Any follow-ups resulting from
those meetings resulted in logging a work item and identifying an
owner. Dedicated meetings did detailed incident retrospectives, following
the Five Whys process. Blameless culture was a critical component of all
discussions and focused on platform and processes rather than on the
individual. Engineers felt safe sharing their opinions.

• To build a culture of accountability and ownership, but also to celebrate
achievements, teams had recurrent Engineering Reviews and Demo
meetings, with a predefined agenda or an open mic style. Both kinds of
meetings, structured and unstructured, established different team col‐
laboration dynamics. Any blockers and changes in priority were com‐
municated and discussed in a timely way.

• Teams established an effective feedback loop to ensure that everyone’s
voice was heard, and on-call satisfaction was measured over time. On-
call engineers would fill in surveys as soon as their on call was over,
including verbose feedback about short-term and midterm improve‐
ment recommendations. Survey results were regularly reviewed and
acted on.

• Finally, highly satisfied teams demonstrated high levels of empathy, look‐
ing proactively at opportunities to support each other.

The volume of pages was not always a good measure of on-call experience.
This number was less important than the approach to it. A culture of trust,
ownership, accountability, effective communication, and collaboration was
critical to building a successful team. It established the foundation to
improve processes and technology that in return drove better on-call experi‐
ence and service reliability.

Collective Wisdom from the Experts 147

Optimize for MTTBTB
(Mean Time to Back to
Bed)
Spike Lindsey
Shopify

It’s the middle of the night. The loud, distinctive sound from your paging app
of choice rudely yanks you from sleep, shortly followed by a call, then a mes‐
sage for good measure: you wouldn’t want to miss a page!

Doing anything after being suddenly woken up is not ideal—dazed, cortisol
levels spiking, maybe even some adrenaline—let alone debugging complex
systems under pressure. However, this is the reality of being on call for many,
because few organizations can invest in follow-the-sun rotations across all
their teams, yet operate systems that need 24/7 availability.

Over time, with enough frequency, out-of-hours pages become a source of
stress and eventual burnout. The human cost is not trivial. Part of the solu‐
tion is fixing the causes of pages, but we have to acknowledge that some
pages will still happen. Knowing this, how can we best support on-callers
and reduce the mental and physical toll of holding a pager?

First, ask, “Will this make sense if you’ve just been woken up?” Even the
most experienced, expert on-callers are not operating at full capacity upon
interrupted sleep. We must actively reduce the cognitive load of incident
response—whether through checklists, runbooks, scripts and tooling, or
dashboards—thinking carefully about whether the information provided has
enough context to be effective but not so much it causes overload.

Take into account users coming into a situation with very little initial con‐
text. Breaking a wall of text (or comments) into single-sentence, simple bul‐
let points may seem like overkill, but it is so much easier to process when still
sleep-addled. Clearly flagging any steps that are tricky, dangerous, or irrever‐
sible also goes a long way. If escalation is needed, provide a clear escalation
path with contact details and escalation thresholds.

148

Second, ask, “Does this get you back to bed faster (and keep you there)?”
This draws focus toward mitigation and exit criteria. At night, a complete
and comprehensive fix should never be the goal; instead, the focus should be
on mitigating enough that the whole team can look at it with more rested
eyes the next day.

Setting explicit expectations about when something is considered mitigated
(but not necessarily fixed) and giving people permission to end an incident
as soon as they think it’s safe to do so can help reduce a tendency for on-
callers to stay up and babysit the system by staring at dashboards. Remind
on-callers that there’s no point staying up—if it breaks again, they’ll be paged
again anyway.

Tying these together is the notion of practice during daylight hours; the
worst time to do something for the first time is in the middle of the night,
during an incident. We do on-callers (and ourselves) a disservice by not
checking things over before an emergency situation, and removing the rough
edges where possible. In the same way that we regularly test fire extinguish‐
ers and smoke alarms, we should also test our tools and processes.

Being paged at night sucks, but doesn’t look like it will go away any time
soon, especially given the scale and complexity of the systems we can build at
speed with small teams. Getting people to think about the human side can
help them empathize as well as draw on their own experiences. As an added
bonus: if it works well at 3 a.m. with someone half asleep, it’ll probably work
even better with someone fully awake.

Collective Wisdom from the Experts 149

Mitigating and Preventing
Cascading Failures
Rita Lu
Google

Picture a toppling stack of dominoes, each one knocking over the next until
every domino has fallen. Cascading failures can happen when a theoretically
loosely coupled system actually has tight connections that we’re not aware of.
In production systems, when an overloaded region fails, its traffic shifts to
healthy neighboring regions, which become overloaded and fail in turn.
Unchecked, cascading failures can progress quickly, leading to a global out‐
age of the system within minutes. This category of failures has been the cul‐
prit of large, public outages of services such as GCP (Google Cloud
Platform)—and even electrical power grids.

There are multiple ways to trigger a cascading failure. A sudden spike of traf‐
fic overloads a component in a system. A seemingly innocuous code or con‐
figuration change that produces performance regressions, thus reducing
capacity, can be a cause despite no increase in overall traffic.

When a cascading failure happens, many overload symptoms present simul‐
taneously, making it difficult to debug and mitigate in time before it spreads
to a global outage. The number one goal should be to break the chain. Front-
line mitigations may vary, but here are some of the core ones that are appli‐
cable to most situations.

For an initial regional overload caused by a change, identifying and rolling
back this change allows the query cost to return to normal. Capping already
affected regions to reduce load can help them recover and prevent them
from becoming completely unavailable.

Front-line mitigation procedures should be well-documented, regularly
tested, and fast to deploy. Even when an expert team of engineers has mitiga‐
tions ready on hand, it can be difficult to mitigate a cascading failure com‐
pletely, without any serious impact on users.

150

A more effective strategy toward a resilient system is prevention through
improving system design. Performance and regression testing in the canary
phase of a release can catch performance regressions, such as memory leaks,
before a global rollout might cause a capacity shortage.

Better load throttling can make regions more resistant to overload by reject‐
ing or degrading responses when a task has reached its capacity. Load test a
region to determine the ideal utilization to target at the load-balancer level so
that individual tasks do not become overloaded. Configure a sensible task-
level, load-balancing algorithm (such as weighted round robin) to keep tasks
as equally loaded as possible.

Stronger isolation between regions can ensure that regional failures do not
spread globally. In this setup, redundancy in each region must be maintained
separately, since neighboring regions can no longer compensate for each oth‐
er’s capacity. This approach can be costly but offers the strongest guarantee
of isolation.

Beyond the system is the toll on humans. Imagine, Friday afternoon, every‐
one’s ready to pack up for the week. The on-call engineer’s pager rings. She
sighs and takes out her laptop to take a look. Very quickly, the entire team is
scrambling to apply mitigations as error rates skyrocket. Rollbacks and caps
are being deployed the quick and unsafe way while a pager storm signaling
global overload goes off. Tickets from customer support are flooding in.
Soon, the director and VP are on the phone, demanding to know time to
mitigate.

This is unfortunately a typical situation when a cascading failure occurs.
Even when multiple mitigations are applied, it may take dozens of minutes to
stop the overload entirely. In addition to the system at risk are the people
under stress trying to handle the situation. Even when the system recovers,
the impact on people can remain. This is why prevention is better than cure;
the only way to avoid customer-impacting outages is to build a system resil‐
ient to cascading failures.

Collective Wisdom from the Experts 151

On-Call Health: The
Metric You Could Be
Measuring
Caitie McCaffrey
Microsoft

A sad trombone noise emanated from my phone one Saturday afternoon.
The services I was on call for requested attention, yet again. It was the end of
my first week on call for a new team, and I had already been paged at least 50
times. I was bleary-eyed and anxious. As I acknowledged the alert I had a
strong urge to throw my phone into an adjacent brick wall. Instead I took a
deep breath and scrolled through the alert details while firing up my laptop
yet again.

We define SLIs, SLOs, and SLAs for service health. We measure availability
and reliability, run postmortems that focus on customer impact, and imple‐
ment health checks for services to detect failures quickly. As an industry,
we’re quick to know whether our services are healthy, but we overlook a cru‐
cial component of running a successful service: whether the people on call
are as healthy.

Are they sleeping through the night? How often are they being paged outside
of business hours? Does the work of being on call fit within a reasonable
workweek? Fortunately, we can use several of the tools and best practices for
monitoring a service’s health to monitor this other critical component.

Metrics to measure
To understand service health, we define SLIs; for measuring on-call
health, we need similar metrics. Note the number of alerts per week, the
severity of alerts when fired per week, the number of outside-of-business
hours alerts. Think about the resolution of alerts. Was the alert noise? Or
was it actionable?

152

Monitor metrics and remediate issues
On-call health metrics should be reviewed regularly. I recommend
weekly, as part of a regular on-call review or hand-off process. Just as we
would with service health metrics, look at week-over-week trends of on-
call health metrics to detect emerging patterns. Use this weekly review to
ask questions such as: Was this an uncharacteristically busy week? Or
has the number of alerts per week been steadily increasing? Are they
actionable or mostly noise? This time should also be used to schedule
follow-up items. If the alerts are noise, they should be tuned or elimina‐
ted. If the alerts are mostly actionable, are there recurring tasks that can
be automated?

On-call postmortems
It’s important to get regular qualitative feedback on the on-call process as
well. Just as we use postmortems to surface qualitative feedback and
learnings on service health, we need to do the same for on-call health.

I recommend running regular anonymous on-call health retrospectives. I
like using a mixture of quantitative and qualitative questions. Ask questions
with numerical scores. For example, on a scale of 1 to 5, how disruptive is
being on call to your work–life balance? Include free-form questions such as:
What’s the worst part of on call? What takes up the majority of your time
when on call?

Once all the feedback has been gathered, it should be analyzed and a set of
follow-up action items aggregated and added to the team’s backlog. Just as
with postmortems and other retrospectives, for this to be an effective tool, it’s
important for the action items to be scheduled and completed in a timely
manner; otherwise, this is a waste of time and will frustrate the on-call
engineers.

This may seem disconnected from the technical side, but remember: if your
service is meeting its SLOs and SLAs, but your on call is unhealthy, your ser‐
vice won’t stay healthy for long. Unhealthy on calls will lead to fatigue, burn‐
out, and attrition. Long term, these will have a negative impact on service
health and the business objectives it supports.

Collective Wisdom from the Experts 153

Helping Leaders Prioritize
On-Call Health
Caitie McCaffrey
Microsoft

You understand that on-call health is a critical feature of running a successful
service. You are an individual contributor or dev lead who has done your
homework. You have read the articles, seen the talks, followed hashtags like
#oncallselfie, and always send #hugops to your friends working at other
companies during major outages. Or perhaps you have learned the benefit of
on-call health the hard way, by being on a team with a horrific on-call expe‐
rience. There’s just one problem: your leadership team does not seem to
value on-call health as much as you do. So how do you help leadership
understand that on-call health is just as important as any feature?

Bring Quantitative Data
Help your leadership understand the impact of on call on your team by
bringing hard data. Charts and graphs, with trends over time, are great and
can really help convey a lot of information quickly. Often, on-call health is
talked about in qualitative terms; these are valid and important, but it can be
difficult for a lead, who has less day-to-day context, to assess the impact on
call has on a team. However, there are quantitative metrics that can be meas‐
ured as well. (See On-Call Health: The Metric You Could Be Measuring, page
152.)

It is much easier for leaders to understand the impact of indisputable met‐
rics, such as that the on-caller was paged every night this week during after-
work hours, than qualitative feedback such as that on call is disruptive to
work–life balance. Helping leaders quantify the impact should help make
your case.

154

Link SLAs to On-Call Health
Availability metrics and on-call health metrics are inextricably entangled. All
attempts to separate them are subterfuge. Bad on calls will result in missed
SLAs, which will lead to unhappy customers. By consistently linking SLAs
and on-call health metrics, you’ll help your leadership understand this sym‐
biosis. How do you do this?

Include on-call health metrics in availability reports
You are likely already tracking and reporting SLA attainment to your
leadership. Start including on-call health metrics.

Include on-call health in OKRs
If your team uses planning tools such as OKRs, set goals for your SLAs
and for on-call health metrics. I’d recommend having a high-level objec‐
tive around service availability. The OKRs can measure things such as
SLAs, success rate, and latency, and an on-call health metric such as
number of pages per week.

Treat On-Call Health like a Feature
During your planning process, account for on-call time. Assume that while
on call, a dev is actively dealing with incidents or is using that time to
improve the on-call experience if it’s a quiet week.

This can be as simple as creating tasks for the on-call dev to ensure that this
work is being accounted for in stand-ups and sprint planning. If you do a
larger quarterly or per-semester planning process, include on call as a feature
and allocate time to it. Typically, this should be one dev per week for the
planning cycle. Highlight this investment to leadership during the planning
process.

By incorporating on-call work in your team’s planning process, you will help
your leadership see this as work that can be planned and budgeted for rather
than as an interruption that the team must just absorb to keep the schedule.

Measure Attrition
Finally, help your leaders understand that sustained bad on calls will lead to
attrition. However, attrition is a lagging indicator of bad on-call health, and
using this metric should be viewed as a last resort, because at this point, the
situation is dire.

Collective Wisdom from the Experts 155

The SRE as a Diplomat
Johnny Boursiquot
Salesforce/Heroku

Although there are common through-lines, no two organizations implement
the practices of site reliability engineering in the same manner—a fact that is,
unfortunately, seldom recognized, much less acknowledged, when rolling out
an SRE function for the first time, especially in organizations where teams
have traditionally operated with complete autonomy and independence from
one another.

For organizations where teams have complete ownership of a service from its
development all the way through to its ongoing operational needs, it’s com‐
mon and necessary for team-specific practices to develop. This total owner‐
ship model works well to move business objectives forward in the early part
of a system’s life cycle, but it eventually and insidiously morphs to become
unaddressed technical debt when maturing teams need to adopt shared relia‐
bility practices and tooling.

The drive for maturation that is supported by engineering leaders will,
undoubtedly, include the attempt to inculcate standardization as a result of
having identified heterogeneity of processes and tooling among teams to be a
barrier to the incremental march toward operational excellence as promised
by SRE adoption. Although beneficial on the surface, these changes are hard
for teams to absorb due to the impact on what they do and how they do it. As
long as feature demands keep coming, operational improvements will often
take a back seat. Bridging this gap between the intent of leadership and the
practical implications within teams requires change agents in the form of
SREs who can be embedded in these teams.

The teams that see themselves as self-sufficient are not always incentivized
to work with a traditional and external SRE function requiring changes in
how they operate—even when those changes would markedly improve
things. Regardless of the reasons, building bridges across these teams
requires us first to establish trust. One way to facilitate this trust-building is
to take the nontraditional approach of embedding SREs directly in those

156

teams, analogous to establishing an embassy on foreign soil to improve rela‐
tions with other countries.

These SREs act as diplomats, working at the crossroads of the needs of stake‐
holders seeking successful adoption of SRE practices within sizeable engi‐
neering organizations. They tackle problems by gathering the concerns,
constraints, and conditions across teams to surface a path forward where all
teams benefit in the long term. They balance the immediate operational
needs of their host teams with the long-term objectives for operational excel‐
lence across the whole engineering organization. They are specialists who
must carefully initiate and facilitate strategic agreements across teams and
with engineering leadership on behalf of their host teams.

I call these diplomats “forward-deployed SREs,” or fdSREs. Implementing
SRE requires close collaboration among engineers, operators, and leadership,
facilitated through interpersonal skill and diplomacy. The fdSRE is at the
crossroads of the needs of stakeholders seeking successful adoption of SRE
practices in sizeable engineering organizations.

As the practice of SRE continues to be adopted throughout our industry,
engineering teams soon realize that the published best practices do not
always fit neatly into their organization for a number of reasons. What SRE
looks like for your teams will require some creativity and a willingness to
break the prescriptive mold put forth in off-the-shelf models. When trust
and alliance-building are what you need to move SRE adoption forward
within your organization, give diplomacy a chance.

To learn more about the qualities of an fdSRE, see my essay, The Forward-
Deployed SRE, page 158.

(The learnings shared in this piece come not only from lived experience but
also from conversations with the following colleagues and industry peers,
whom I’d like to thank here: Sarah Sherbondy, Paul Lathrop, Will Barnette,
Steve Conklin, Kimberly Lowe-Williams, and Christian Funkhouser.)

Collective Wisdom from the Experts 157

The Forward-Deployed
SRE
Johnny Boursiquot
Salesforce/Heroku

SRE teams are often independent of any other and operate with their own
objectives and mandates within the broader engineering organization. How‐
ever, the embedded model is another approach that isn’t often talked about,
but that can be effective when seeking SRE adoption or investing in ongoing
operational excellence. In The SRE as a Diplomat, page 156, I discussed the
need for the fdSRE (forward-deployed SRE) as a manifestation of the embed‐
ded model. Here, we discuss the attributes that make a great fdSRE.

As with SRE, the fdSRE is a competent but operationally minded software
engineer. As they engineer software, they think about how it will run in pro‐
duction, how it will behave under load, what configuration will look like,
what security and/or compliance will look like, how it will regain a consistent
state when restarted, and how it will be observed.

The fdSRE takes on more ownership. As an embedded engineer in another
team, they are concerned about the health of their host team but also about
the broader mission of the SRE organization with which they have a dotted-
line reporting relationship. In the total ownership model, where teams own
the whole stack, the impetus to solve a higher-order problem that affects
everyone can be lacking. The fdSRE must learn to build relationships and
engender trust to identify solvable problems they can take back upstream. As
fdSREs share their common pains with each other, they can then build the
most impactful solutions and act as conduits throughout the organization.

The fdSRE is empathetic. As with any person joining a new team, it can take
time for the fdSRE and the host team to gel. The team may not know
whether the fdSRE is aligned with them, but over time, as they work on
problems together, that trust gap has a chance to close. The fdSRE must
understand this and give the host team members room and time to acclimate
to their presence.

158

The fdSRE is a catalyst for change but knows not everybody is ready for it.
They inspire the desire for change and give people space, time, and the data
to want to be part of the solution. To that end, they meet teams and individu‐
als where they are on the journey to increased operational maturity.

The fdSRE is a teacher and mentor. Chances are that nobody on the host
team will have the same level of operational expertise as the fdSRE. Having
an SRE on the team who can impart knowledge is extremely valuable and
can be exciting for host team members to help them develop that operational
mindset. Inclusive of the fdSRE’s duties is the education and growth of other
engineers.

The fdSRE is a diplomat. There is a human side to the role that is invaluable.
They understand that every team ultimately wants to have a positive impact
on the organization and that sometimes trade-offs and compromises must be
reached through tactful negotiations, not mandates. This can take the form
of providing data, asking about pain points, and understanding and working
the channels that help decisions be made.

If you adopt the fdSRE approach, be prepared for a deliberate effort to be put
toward collaboration between engineers across teams and with engineering
leadership to drive all parties toward the safe creation and maintenance
of scalable and reliable software systems, and know that the effort is
worthwhile.

(The learnings shared in this piece are also informed by conversations with
the following colleagues and industry peers whom I’d like to thank here:
Sarah Sherbondy, Paul Lathrop, Will Barnette, Steve Conklin, Kimberly
Lowe-Williams, and Christian Funkhouser.)

Collective Wisdom from the Experts 159

Test Your Disaster Plan
Tanya Reilly
Squarespace

Systems fail. That’s fine. Site reliability is a whole discipline that specializes in
anticipating and mitigating failure. We build systems that are observable,
introspectable, and recoverable that limit the blast radius of an outage. We
design for failure.

Failure planning often includes fallback plans, alternate pathways through
our code, and systems or processes that we’ll use when our regular mecha‐
nisms fail. A client may retry a failed request, for example, hoping it hits a
healthier replica next time. A leader-elected system may move leadership
away from an unresponsive server. Fallback plans sometimes involve
humans; every time we page an on-caller or take some action in response to
an outage, we’re executing a fallback plan.

Our regular pathways are constantly in use. We know they work, and we
notice when they fail. Many of our fallback plans are also well-traveled, run‐
ning so frequently that we’ll find out if they have problems. What about the
less-traveled paths? If we only use them during emergencies, we might not
find out they don’t work until we really need them.

An extreme illustration of this problem is an industry classic: the gently rot‐
ting disaster recovery site. A team anticipates a massive failure of their pri‐
mary site and builds a replica of their system in another region or another
data center. They configure their deployment pipelines to push to both
regions, set up data replication, and call it good—until disaster strikes and
the failover region is needed for the first time. Now at 3 a.m., with all hands
on deck, the team finds the hard-coded DNS names that point to the old
region, the forgotten passwords, the commented-out replication policy, and
the fixes too temporary to copy to the DR (disaster recovery) site—fixes that
are, of course, now vital infrastructure.

We need to discover these problems while we can still fix them. That means
testing our fallback plans. Some of these tests are simulations. Many organi‐
zations run game days, when they practice responding to typical disaster sce‐
narios, sometimes reproducing them with test data. Teams can test their own

160

response with local wheel-of-misfortune exercises, role-playing a possible
outage in detail so that the team has to go find real logs, graphs, configs, even
the phone numbers of their colleagues—anything they might need in a real
incident.

Role-playing for disasters helps us uncover the parts of our plan that don’t
work or that we don’t quite understand. They build muscle memory and
reduce panic too. Think about how building fire drills have trained us to
walk calmly to the meeting area without freaking out.

Simulated disasters are helpful, but it’s even better if we can make the fall‐
back plan part of our normal operations. The first time you fail over to a DR
site, intentionally bypass your cache, or firewall-off one replica of a service to
test its redundancy. It’ll be pretty scary. You may break something. But the
best time to break it is while you’re watching it and can quickly roll back. It
will get a little easier every time.

As with all things reliability, the priority of testing the fallback plan should be
proportional to how important it is to the business. If the worst outcome of
failure is that some teams will need to do extra work, maybe that’s an accept‐
able risk. If the fallback plan is the only thing standing between you and the
end of your business, take it very seriously.

A disaster plan can only keep you safe if it works. Identify your fallback plans
and try them out. Make sure that they’re ready when you need them.

Collective Wisdom from the Experts 161

Why Training Matters to
an SRE Practice and SRE
Matters to Your Training
Program
Jennifer Petoff
Google

When it comes to site reliability engineering, there is a lot to learn. Whether
you are aspiring to become an SRE or ramping up on a new service, you may
feel like you are drinking from a fire hose of information. You need to learn
about the ins and outs of complex production systems, incident management
best practices, and more.

For adult learners, and especially for people new to a team, imparting techni‐
cal knowledge is not the top training-related consideration. Instead, building
confidence and fighting impostor syndrome are most important. Beyond
instilling confidence, training is also about driving or perpetuating a desired
organizational culture. Training is an investment in your organization and
people.

So where should you begin? I have one acronym for you: ASSBAT, which
stands for a student should be able to. ASSBATs are learning objectives that
focus on behaviors you want to drive and observe. Understand, the $foo ser‐
vice is a bad ASSBAT. Better ASSBATS might include:

• Use $tool to identify how much memory a job is using.
• Interpret a graph in $monitoring_tool to identify the health of $foo

service.
• Move traffic away from a cluster by using $drain_tool in five minutes.

By using these types of ASSBATs, you can observe and measure how training
is applied day to day. Start with ASSBATs, and you’ve equipped yourself with
the beginnings of a great training strategy rather than relying on hope.

162

Now let’s get meta. This essay is about training site reliability engineers. Did
you know that the foundational principles of SRE can be applied to the train‐
ing program itself? Let’s revisit the Service Reliability Hierarchy outlined in
the original SRE Book. The hierarchy covers the elements that go into mak‐
ing a service reliable, from most foundational to most advanced. The ele‐
ments of the Service Reliability Hierarchy can be adapted to the training
context (see here, p. 84).

First, monitor the performance of your training program in the form of
attendance tracking and survey feedback. Define SLOs (service level objec‐
tives) for the training program and communicate them.

Address issues that surface through monitoring. If a survey response comes
in for which certain questions are scored negatively by a student, this calls
for investigation and follow-up to understand what went wrong. Was it a
curriculum issue, a logistics issue, or an instructor issue?

Write postmortems when things go wrong to learn blamelessly from failure.
Writing a postmortem when an issue significantly affects the student experi‐
ence allows the training team to define action items that drive real improve‐
ments to the program.

Always test new content and programs with pilot sessions. For the test teach‐
ing session (pilot), make it clear to the students that you are testing new
material, and leave time at the end of the session for feedback.

Scale operations by looking for opportunities to vanquish toil through auto‐
mation to make the most of limited human resources. Only then can the
program be fully actualized and achieve the full potential of the curriculum
design and the program itself.

Too often, companies allow a sink-or-swim strategy for training. Not only is
it ineffective, but as I’ve shown, effective SRE training is within your reach.
Thoughtful training ensures that you are setting your people up for success
while walking the talk by applying SRE principles to the program itself to
drive continuous improvement.

Collective Wisdom from the Experts 163

https://oreil.ly/3emUN
https://oreil.ly/aMduh

The Power of Uniformity
Chris Evans,
Suhail Patel,
and Miles Bryant
Monzo

Every organization wants to move fast, so it’s important to understand the
things that can slow it down. In SRE, those often derive from one or more
among friction in making changes or understanding how to, complexity of
the operational domain, and freedom of choice. At Monzo, uniformity is the
key to keeping us moving; uniformity has led to consistency, consistency has
led to focus, and focus has allowed us to build the fastest growing bank the
UK has ever seen.

Like all startups, we began with a small group of engineers responsible for
the entirety of the company’s technology, from the low-level physical infra‐
structure to the microservices serving customer requests. With a small team
and a blank canvas, we needed to focus our effort where it was needed most
—on building a bank. The layering of standard approaches simply meant we
became increasingly efficient at solving actual customer problems. Rather
than starting from zero on each iteration, we could focus our efforts on the
10% that really made a difference.

This isn’t about stamping out freedom of choice or imposing unnecessary
constraints on innovation, but instead about providing a set of defaults that
work so well that it’s hard to make a case for doing anything else. When an
engineer can create a service with handlers, metrics, logging, and signal han‐
dling and debugging endpoints and ship it to production in minutes, it’s hard
to justify the cost of starting from scratch. With a well-trodden path and a
shared understanding that the benefits of following that path extend beyond
the local maxima of any individual or team, people become naturally more
judicious about where they spend their innovation tokens.

Maybe you’re reading this, thinking, “This can’t work at my organization.”
Uniformity shouldn’t be seen as an absolute. What is uniform to one com‐
pany could be proliferation in another. A long-established organization with
a diverse portfolio of systems and applications can still define approaches
that converge on uniformity. It’s easy to look at the landscape and assume

164

you are beyond recovery, but try drawing a boundary around what you have
today, and a smaller one defining where you’ll take your next steps.

If you have six programming languages in circulation, and a subset is serving
the needs of most engineers, uniformity could mean standardizing on that
subset for all future development. Given clear principles and constraints
around choice, any company can move toward a more uniform, simpler-to-
operate system.

With everyone working from a common framework, uniformity is a force
multiplier. The efforts of any individual on any shared component have a
positive impact on every other engineer in the organization. If we fix a bug in
a library, everyone benefits. If the fix requires a large number of services to
be redeployed, and they’re all deployed in the same way, we easily do that
too.

Operational activities become easier in a uniform environment too. Services
become measured by their differences in business logic, and when every
engineer understands the common components and communication pat‐
terns of all services, it’s easier for them to support both their own services
and those they interact with directly.

Systems are growing increasingly complex; consistency in common compo‐
nents means reduced cognitive load, faster execution, and a focus on what
matters most to your business. For us, what was born out of necessity and
unspoken convention evolved into a well-defined set of principles and prac‐
tices that engineers now live and breathe, with one common platform, one
programming language, one framework for all 1600 microservices, one
deployment process, and one way to monitor everything.

Collective Wisdom from the Experts 165

https://oreil.ly/OKVnU
https://oreil.ly/OKVnU

Bytes per User Value
Arshia Mufti
Stripe

I remember a time during which we were growing steadily as a business,
but the systems teams that supported our product stayed stagnant and over‐
loaded, and its arguments for increasing head count fell sort of flat. Our lead‐
ers didn’t understand that our teams needed more people. As far as they were
concerned; business was growing, and the areas that deserved investment
were not systems teams but product teams that needed to build new features,
sales teams that needed to onboard new users, field engineering teams that
had to help developers integrate with our API. There was a serious lack in
our ability of our systems teams to speak the language of our users and stake‐
holders. We didn’t know how to stitch together stories that involved both end
users and the foundational systems that they depended on.

So instead of starting with ourselves, we started with those end users. We
pulled data on user growth and asked ourselves how we could demonstrate
that investment in our infrastructure is inherently correlated with the growth
of our business.

From there, we were able to tell a story of how growth in a user’s business
brought with it an increase in API volume, which in turn put a proportional
burden on our infrastructure. Instead of showing that we were scaling up
servers more frequently than we did before, we quantified how much of our
increased scale was demanded by the fastest-growing users of Stripe and
used this argument to leverage an investment in our reliability.

We were also able to demonstrate to others what we already knew: that sys‐
tems teams absorb a disproportionate amount of the manual toil needed to
keep our businesses functioning. We are paged more often, our user asks
have grown, and our pager-interrupted hours are longer. Most important, we
showed that these interruptions were, on average, a direct result of the unex‐
pected growth of some of our users, and that addressing them would be in
the best interest of our business’s health.

It isn’t enough to say, “We don’t have enough people, so give us more.” It also
isn’t enough to say, “We processed more bytes per transaction this quarter, so

166

give us more money.” The argument that everyone needs more money, more
people, more servers, and more resources within an organization tends to be
a zero-sum game. Ultimately, what helped us make a convincing argument in
favor of investment in our teams was proving to our leadership that a change
in the forces they care most about percolate down to our systems teams.

More broadly, I’ve been thinking about why this seems to be such a challenge
for the infrastructure industry. Product teams have well-exercised processes
for wholly understanding their users. For them, it’s not just about giving the
users what they want; it’s about understanding what they are like: their use
cases, their worries, and their constraints. In systems engineering, we have
yet to establish similar user-serving paradigms. We don’t know how to hire
for it, we don’t know how to teach it, and we don’t quite know how to under‐
stand its value. Our fallibility lies in that we optimize first and only for the
immediate consumers of the services we operate, and are quick to categorize
any other problems they have as out of our scope. This is somewhat organic;
we naturally tend to be more degrees of separation away from end users than
product teams are, but it is nevertheless worth a course correction. We need
to teach ourselves to break free from the technicalities of our systems and
understand the people that our systems ultimately affect.

Collective Wisdom from the Experts 167

Make Your Engineering
Blog a Priority
Anita Clarke
Shopify

Every engineering manager I know wants to hire the best talent possible, and
yet they can neglect one of the strongest tools in their kit: a great engineering
blog.

Talented developers are hidden everywhere across the globe. Some may be
familiar with your company’s work, whereas others haven’t discovered it yet.
An engineering blog raises a company’s profile to an audience that is magni‐
tudes larger than the average conference attendance, especially if your post
picks up steam on, say, Hacker News.

Candidates make decisions about your company’s offer based on the quality
of the engineering blog. I’ve heard it enough times from senior SREs and
leadership to understand this is a major thing. Hell, it’s the first thing my
Director said to me when I joined their team. Culture is one of the most
important factors to a candidate, and to recruit successfully, it should be a
mandatory part of your storytelling efforts.

An active, highly regarded engineering blog makes you more attractive
to candidates. Yes, it’s a lot like dating in a way; SREs want to do that Google
investigation on you first, and a great blog makes an effective first
impression.

So don’t make it fluff. The blog is actually a great place to share information
about what you’re working on, and fill it with as much substance as you can.
Peers experiencing the same issues can use your solutions to overcome them,
or if you’re sharing an issue not solved yet, peers can reach out after seeing
the post. For SREs using open-source tools, these connections and discus‐
sions are crucial. We all help each other when collaborating on open-source
solutions. These posts kick-start the vital conversations by raising awareness.

Storytelling gives life to inert, vague job titles, adding clarity and excitement
instead of head scratches, figuring out what this job title means compared to

168

industry standards. They see the tech stack and its usage and in-depth analy‐
sis of the choices and trade-offs teams make along the way in their projects.
In short, an engineering blog gives candidates insight into working for your
company that isn’t possible during the interview process.

Now, this needs to be intentional. If you hope that high-quality blog posts
will randomly spring out of your engineers by themselves, when they already
have enough work to do, you’ll be disappointed. It’s stronger when there’s
a dedicated individual or team whose sole focus is to help make these com‐
pelling stories powerful, professional, and promotable.

Blog posts are collaborative learning efforts. Writing requires research
regardless of years of experience. You see a ballet dancer’s graceful and fluid
motions, but you don’t see the bloody toes that go with it; that’s writing.
However, know that the effort will be worth it. Through the writing and edit‐
ing process, everyone learns more about the topic through this feedback loop
by sharing, discussing, and reevaluating ideas. An engineering blog is not
only great for recruiting; it’s a key component of a strong learning
organization.

Collective Wisdom from the Experts 169

Don’t Let Anyone Run
Code in Your Context
John Looney
Microsoft

My team runs a machine-installer service. Submit a request for a new OS,
and your machine is netbooted into a RAM disk, which sets up the disk and
downloads an OS. Customers wanted to be able to tweak all disk settings;
choosing a filesystem type wasn’t enough.SREs love smart hacks; they enable
extra functionality without a lot of work, but some classes of hacks are anti-
patterns, and the short-term gain is nothing compared to the long-term pain.
We thought we were clever by letting customers provide a shell script to be
run before the OS was installed. This script might create partitions, RAID
arrays, and filesystems. As long as a root filesystem was mounted after the
script terminated, their machine got an OS.

Fast forward several years. There are hundreds of shell scripts, some no
longer used. Others are forked copies of scripts from machine owners long
gone, and bugs found in one script weren’t backported to its original. Due to
bugs in customer scripts, 2% of attempts to provision machines failed! This
impacted our service metrics and gave customers the impression that we
provided poor service. They weren’t wrong.

There were many causes for the failures. Some drives don’t support all
hdparm commands. Assumptions were made about device size. Some bro‐
ken SSDs silently drop writes, and when you read back the partition table, it
will be zeros. Drive and RAID setups can fail in thousands of ways. Some
scripts were 1800 lines long—without unit tests.

We had accidentally built a system dependent on hundreds of our users
being able to write defensive shell scripts in a world of unreliable, changing
hardware. Our unfounded optimism was rewarded with a constant stream of
hard-to-debug issues. Our smart hack turned out not to be very clever.

The only answer was to take our users’ code out of our team’s context. So we
built a system that used validated user-provided JSON, describing what the
disk layout should look like. We promised customers that we would make the

170

disks look as they wished and take responsibility if our code caused problems.
It was a pain in the ass to reverse-engineer the 350 shell scripts, work out
their intent, ensure that our disk-layout tool supported the dozens of use
cases on hundreds of platforms, and then migrate everyone to the new con‐
figurations, but once it was done, our provisioning reliability went from 98%
to 99.8% overnight.

In tens of thousands of servers a week, 99.8% is still a lot of failures, and
investigations uncovered another smart hack that was causing intermittent
problems. When customers gave us machines, we would first ensure that the
machines were drained of traffic and data. To do this, we ran a drain script.
Guess who wrote these—our customers, and of course, if their scripts
crashed or hung, it looked like we were taking a long time to reinstall the
machine.

Thankfully, we know how to fix this! Take our users’ code out of our team’s
context. Have our customers drain machines before they ask us to reinstall
them. Refuse to accept undrained machines. It may seem like a minor
semantic difference, but from an SLA perspective, we cannot offer a mean‐
ingful SLA if we are beholden to code we don’t own.

Never let your customers feed you code; insist on validated configuration!
Never give an SLA on a service that contains code from other teams! Never
offer an SLA on a service that includes unreliable dependencies! You cannot
abdicate your responsibility to understand deeply what your customers do
with your service. Defend your service and your team’s reputation for good
customer service!

Collective Wisdom from the Experts 171

Trading Places: SRE and
Product
Shubheksha Jalan

Historically, there’s been a tension between SRE teams and product and fea‐
ture teams akin to the wall between ops and dev teams. The former want to
optimize for reliability first and foremost, whereas the latter want to ship,
which leads to change—which leads to things breaking. We don’t need to live
with this oppositional relationship. If we can build empathy between product
and SRE teams, it will not only lead to a healthier relationship, it will be a
stronger win–win outcome for everyone.

How does this happen? It’s important for engineers on both teams to be in
each other’s shoes to understand and make the right trade-offs. When prod‐
uct engineers don’t operate with a reliability mindset, they shift an unfair
burden onto SREs that can lead to unpleasantness and, in the worst case,
burnout. When SREs don’t adopt a product-engineer perspective, they might
not understand the pressure from executives and stakeholders, and both
teams miss the opportunity to broaden their knowledge.

The ideal scenario here would be for each feature team to be responsible for
running its own service rather than for the SREs to be paged in the middle of
the night. However, this isn’t always possible. On call is hard. It can be dis‐
ruptive and taxing even when done well. If it lacks empathy or care, it can
have disastrous consequences. Engineers can’t and shouldn’t be forced to be
on call. Some folks do not want to be woken up in the night and have pretty
good reasons for that opinion, such as having a chronic illness or caring
responsibilities. This can’t work if people are unhappy with the on call. We
need to create feedback loops to have a healthy on-call culture.

This is where we want to get to, although I understand that teams can’t start
there from the get-go. However, we can have a somewhat hybrid solution
here by letting engineers rotate on the other team periodically for a duration
of, let’s say, two quarters. (That duration, of course, depends on your organi‐
zation, and you’ll want to find the balance that works best for your teams.)

172

This will lead to better understanding and collaboration between the feature
and SRE teams in the future, when members of each are aware of the issues
the other team faces and the kind of trade-offs they have to make on a daily
basis.

This also helps you expand your skills as an engineer, because SRE work can
vary greatly from day-to-day feature work. It can open your eyes to a brand-
new domain that you’ve been working adjacent to but haven’t gotten a
chance to explore. If SREs know how product teams function, they can use
that insight to make the platform more reliable. Product engineers tend to be
the ones who talk to customers, and SREs can be shielded by it, so SREs can
learn about customer demands directly. SRE teams responsible for platforms
see product engineers as their customers. When SREs rotate with product
engineers, they are in a way talking to customers.

Engineers should have some idea of how, where, and why their code is being
run and thus ship the best version of the software possible. This gives them
a chance to do exactly that, leading them to become much more holistic
engineers overall.

Collective Wisdom from the Experts 173

You See Teams, I See
Product
Avleen Vig
Facebook

In 1967, Melvin Conway coined Conway’s Law, as follows:

Any organization that designs a system (defined broadly) will produce a
design whose structure is a copy of the organization’s communication
structure.

Over time, organizations have learned the value of not only having strong
communication and collaboration between teams, but also of structuring it
in specific ways. This becomes part of the team culture, and it instructs ICs
on how to behave both as individuals and in groups.

Conway’s Law should be applied in reverse by organizations. Find the way
you want your product to behave and create an organization whose commu‐
nication structure emulates it. If your product has a high social factor, you
probably want to encourage a lot of communication between teams. If your
product is used in highly regulated industries, you may want to create a more
process-driven, hierarchical organization.

The place you land on the spectrum between microservices and monolithic
applications depends on how well the components in the system, and indi‐
viduals on your teams, are able to communicate. If the interfaces are well
designed, robust and resilient, and don’t change very often, you may lean
toward microservices. If your team spends a lot more time trying to figure
out the latest correct way to talk to each other and they have a high degree of
chatter, you may lean toward monolith. There is no wrong answer, but keep
in mind that these are both sides of the same coin.

The challenges since the emergence of COVID-19 in late 2019 have forced
many of us to ramp up on different ways of collaborating and working. Com‐
panies with local, distributed, and remote teams have different challenges.

Let’s first define the differences between local, distributed, and remote teams.

174

Local teams
The vast majority of ICs and their managers are located in the same
office.

Distributed teams
The team consists of 2 or more geographically diverse local teams. For
example, you may have 4 engineers and the manager in New York and 5
in London.

Remote teams
The majority of ICs, and possibly the manager, are in different locations.

My main interest here is to discuss remote teams, because they present more
challenges in defining and creating cultures, and many organizations have
yet to take the first steps in adapting their existing cultures to being remote-
friendly. Look at the ways your teams and groups are structured today and
find ways to emulate the most important links for when employees move to
being remote.

The structural challenges remote ICs face, especially early on, center on com‐
munications and autonomy. ICs need to act with greater autonomy due to
their relative isolation, make more decisions themselves, and communicate
those to their peers. In a software product, you could imagine multiple inde‐
pendent processes doing their work and communicating the results over a
shared protocol.

Creating and managing remote teams still needs the same design and process
as creating local teams, but now you also have to think more deliberately
about the culture you want to promote. It’s far easier to get it wrong when
most of the people on the team are far apart, but be patient with the process,
because the investment is worthwhile.

Collective Wisdom from the Experts 175

The Performance
Emergency Fund
Dawn Parzych
LaunchDarkly

SREs rely on concepts such as error budgets to manage changes across the
organization, whether that means determining whether a release can move
forward or identifying where to make improvements. Error budgets are
related to availability, but of course, you need to know not just whether
you’re available but also the quality of that availability.

If you’re not thinking about the quality, then you’re only getting part of the
picture—but how do we define quality? I’d argue that one of the most impor‐
tant ways is through performance. How do you feel when it takes what seems
like forever to load? Or performance on your smartphone is slower than on
your laptop?

Everybody in an organization should care about performance. If a site loads
too slowly or inconsistently, you run the risk of lost customers and lost sales.
Nobody wants that.

Numerous studies have shown that faster-loading pages result in higher reve‐
nue, increased user engagement, and a decreased bounce rate. Slow-loading
pages can also be an early indicator of a problem. Catching a problem due to
slowness is better than waiting for a failure.

Just as you can create an error budget, you can do the same for performance.
A performance budget is a clearly defined limit on performance metrics used
to guide design and development. You can have multiple budgets for differ‐
ent metrics. Here are some that I think are especially valuable:

• Total page weight
• Maximum file size
• Response time thresholds
• Number of HTTP requests

176

Similar to bringing together different parts of an organization to consider
SLOs (and, by extension, error budgets), you can do the same for perfor‐
mance as well and gain invaluable insights from the range of points of view.
Find out who in your organization cares about the end-user experience and
work with them to devise a performance budget if you don’t already have
one. The creation of a performance budget should include stakeholders from
design, marketing, operations, and engineering—it is truly a collaborative
effort. The creation and maintenance should not fall to a single team.

Performance budgets reflect ongoing and changing business goals while
allowing for risk and experimentation. Flexibility notwithstanding, the team
must agree not to exceed the currently defined budget. If all teams agree on
the performance budget from the start, each feature and design decision will
be checked against the guidelines. Any decisions that might impact perfor‐
mance should be checked against the budget. Performance budgets provide
another layer of accountability when site changes are proposed.

We must always think from the perspective of the customer. Does the cus‐
tomer care whether the site is up or down? Yes. Does the customer care
whether the site loads without errors? Yes. Does the customer care whether
the site loads quickly? Yes. If the customer cares, you should too.

If the site is up but users are abandoning the site because it took too long to
load, that’s not good for business. In the end, the work we do doesn’t matter
if it doesn’t align with business goals and objectives.

Collective Wisdom from the Experts 177

Important but Not
Urgent: Roadmaps for
SREs
Laura Nolan

Former American President Dwight D. Eisenhower organized his work
according to importance and urgency. Important and urgent tasks were done
immediately, and unimportant tasks were delegated or ignored. The most
challenging quadrant of Eisenhower’s matrix was the intersection of impor‐
tant and nonurgent—things that made a difference but also were easiest to
defer indefinitely. Eisenhower’s approach to this kind of work? Plan.

Eisenhower’s dilemma applies to SRE teams too. Have you ever worked with
a problem system that constantly generated toil or downtime but was never
redesigned? Ever noticed a team that disagreed over long-term technical
direction, in which only one person drove strategy or, worst of all, in which
nobody seemed to have a plan that extended past the end of the current
quarter? These are the organizational smells of a team requiring a roadmap.

A roadmap is a high-level description of strategic work that a team wants to
accomplish in the next couple of years. All SRE teams ought to have a road‐
map because it helps teams think beyond the immediate and instead reflect
on what work is important. We are engineering teams with operational
responsibilities, which lead to urgent, reactive work: putting out fires or act‐
ing on requests from other teams. It’s normal (and fine) for some of our
work to deal with immediate needs, but teams that operate only on the
urgent side of the Eisenhower matrix are limited in what they can achieve. A
roadmap is the best way to avoid that trap.

Many problems we face cannot be solved incrementally, because they require
engineering investment over multiple quarters. Teams in perpetual firefight‐
ing mode can get stuck in a local maximum, using short-term fixes to keep
things running but never making larger changes to eliminate underlying
issues.

178

For example, a team might spend years on a better recovery-and-restart pro‐
cess for a single-homed service. Instead, it could invest in re-architecting that
system to run as a multi-homed service that can survive the loss of a data
center. The second approach eliminates a source of stressful toil, risk of data
loss, and downtime for good, but that project could take a year to complete.
It’s the sort of project that’s only possible using a roadmap.

Roadmaps set out what a team should do in the long term, why those objec‐
tives are important, and the relative priorities of those goals. A roadmap isn’t
a laundry list of OKRs (objectives and key results) for the coming quarters or
a set of external commitments. (No roadmap survives contact with the
enemy.) Instead, it signals intention. Roadmaps are invaluable when explain‐
ing to stakeholders why urgent but less-important work sometimes has to be
deprioritized.

If you’re ready to attempt a roadmap, know that every team doing strategic
engineering work has one but that it’s often in someone’s head. Far better to
write it down. The act of writing and agreeing on the roadmap document
creates better alignment. A lead can draft the document, but the whole team
should have an opportunity to give input before adoption.

Roadmaps are living documents and need an update every year or so. Less
often than that, you may not be making progress on your strategic goals. Sig‐
nificantly more often than annually, your roadmap may be too focused on
the short term.

As Eisenhower said, “What is important is seldom urgent and what is urgent
is seldom important.” Don’t get so bogged down in the day-to-day distrac‐
tions all SREs face that you neglect planning and executing the long-term
projects that will have the greatest impact on your organization.

Collective Wisdom from the Experts 179

https://oreil.ly/UIR2Y

PART V

The Future of SRE

That 50% Thing
Tanya Reilly
Squarespace

The traditional model for operations was that software engineers would
“throw services over the wall” to a dedicated team that would make them
work in production. Systems administrators used heroics to keep their sites
up while they automated away the jagged edges. Firefighting was just part of
the job.

Site reliability brought us a new model. With reliability as a first-class fea‐
ture, the teams running production expected the same status—and the same
salary—as the teams creating the features that ran there. One manifestation
of that was the rule that SREs spend no more than 50% of their time on ops
work. When I began my first SRE role in 2006, that meant every SRE should
spend 50% of their time coding.

However, when you’re running services in production, there’s always ops
work to be done. Something is close to its scaling limits. Something is having
mysterious, ephemeral outages. Something is a monster to deploy. SREs who
weren’t drawn to coding, or who were motivated by solving problems (a
common ops personality type) struggled to ignore the interrupts for long
enough to ship meaningful coding projects.

Over time, “at least 50% code” became “at most, 50% ops.” And, honestly,
that’s fine. As an industry, we’ve often over-emphasized (and over-
interviewed for) code. It’s mature to evolve “50% code” into “50% deliberate
project work to make your services better.” That still might mean coding, of
course, but it also might mean wiring together an off-the-shelf solution,
increasing redundancy, or writing documentation.

Thinking beyond code is healthy, but what about the other 50%? Over time,
the rule has shifted from “no more than 50% ops work” to “no more than
50% toil.” That feels less healthy to me.

Google’s SRE book defines toil as “the kind of work tied to running a produc‐
tion service that tends to be manual, repetitive, automatable, tactical, devoid
of enduring value, and that scales linearly as a service grows.” Engineers

181

working on operations problems such as performance tuning, monitoring,
or scaling will boost their skills as they improve their service. Toil’s different.
It doesn’t change much from week to week, and you rarely learn anything
from it. But if you stop doing it, the service will stop working.

Fifty percent ops work sounds like a fine life choice to me. Fifty percent toil
doesn’t. We’re undervaluing SRE skills when we tell other teams that SREs
can spend half their time doing work that’s repetitive, automatable, tactical,
and so on.

Here’s a maybe controversial opinion: I don’t think SREs should do any more
toil than any other engineering discipline. It’s fine to fight fires for a little
while fixing a crisis, just like we might ask any software engineering team to
sprint to get us through a rough time. But that shouldn’t be typical. The team
of reliability experts should never be a Band-Aid® over systems that can’t stay
up without repetitive human action. Reduction of toil needs to be an
engineering-wide goal, not an SRE hot topic. Reliability and operability can’t
be an afterthought.

SRE has thrown out a lot of the systems administration hero culture. We’re
careful to avoid alert fatigue. We’re wary of burnout, but we’re still far too tol‐
erant of keeping services alive by using toil.

That 50% cap was the right call at the time to distinguish SRE from the oper‐
ations roles that came before. Now it’s time to go further. If SRE wants to take
itself seriously as an engineering discipline—and I think it should!—I hope
we set more aggressive limits on toil.

97 Things Every SRE Should Know182

Following the Path of
Safety-Critical Systems
Heidy Khlaaf
Adelard

SCSs (safety-critical systems) are systems whose failure or malfunction may
result in death or serious injury to people, loss or severe damage to equip‐
ment or property, and environmental harm. Despite such high risks, SCSs
are often riddled with complex software, raising the potential for detrimental
behavior. As a result, these systems are subject to stringent regulatory frame‐
works that require the use of rigorous development techniques that may mit‐
igate adverse behavior.

A prevalent myth within the tech community is that these techniques are
unnecessarily rigorous and complex and reserved for only the most critical
safety systems. Unfortunately, this means a considerable and rich set of guid‐
ance and methodologies developed by the SCS community is seldom used or
even considered within the tech industry.

SCSs vary greatly in their requirements regarding the rigor and applicability
of development techniques, often overlapping with systems that parallel
those within the scope of SRE. For example, IEC 61508, the most prevalent
safety standard, consists of methods on how to apply, design, deploy, and
maintain safety-related systems. Although this standard may appear specific
to only SCSs, a closer examination reveals that the principles mirror those of
system dependability used in systems engineering, such as availability, relia‐
bility, safety, integrity, and maintainability.

The application of each development approach in IEC 61508 largely depends
on the required rigor of the system as defined by an SIL (Safety Integrity
Level). An SIL is a measure of an allowable probability that a safety function
will fail to respond on demand. SREs may find safety availability—the availa‐
bility of a safety integrity system to perform a task—looks familiar, described
in percentage (%), synonymous to the five-nines high availability require‐
ment, as you can see below.

183

1 P Bishop, R Bloomfield, and S Guerra, “The future of goal-based assurance cases,” in Proceedings of
Workshop on Assurance Cases, Supplemental Volume of the 2004 International Conference on
Dependable Systems and Networks, pp. 390–395 (2004).

2 IAEA Nuclear Energy Series, Challenges and Approaches for Selecting, Assessing and Qualifying
Commercial Industrial Digital Instrumentation and Control Equipment for Use in Nuclear Power
Plant Applications (2020).

Standards such as IEC 61508 thus offer a rich repository of techniques that
users can employ to achieve a target SIL, or availability, including require‐
ments traceability, formal methods, static analysis, fault detection, complex‐
ity metrics, modular design, defensive programming, MC/DC (modified
condition/decision coverage), process simulation, avalanche/stress testing,
and many others.

Not all techniques can be applied to or required for all systems, and no dis‐
tinction between techniques is made across differing requirements. A crucial
element of adapting such techniques to SRE is the ability to interpret a stand‐
ard’s requirements against each unique software system. However, such guid‐
ance is rarely provided by safety standards, and may require expertise to
determine sufficiently when and how to deploy specific development meth‐
odologies. As a result, techniques proposed in “The Future of Goal-Based
Assurance Cases,”1 now adopted by the IAEA (International Agency of
Atomic Energy),2 aim to classify the role of how different development meth‐
odologies can justify critical system claims such as safety and dependability.

As SRE’s relevance continually expands to systems we rely upon daily, the
requirements of SREs increasingly align with that of SCSs. Consider safety-
critical IoT, where smart medical devices rely on the availability of cloud
services to operate at SIL 3. As more software systems intersect with SCS,
SREs should look toward SCS disciplines to carve a way forward for the
deployment of safe, dependable, and available systems.

97 Things Every SRE Should Know184

Applicable and
Achievable Static
Analysis
Heidy Khlaaf
Adelard

SA (static analysis) is a method of analyzing software properties without exe‐
cuting code and varies in its rigor, encompassing analyses from syntactic
checks (e.g., linters) to formal verification techniques. SA can either be man‐
ual or automatic, requiring mathematical proofs for the former or automated
inspection by static analyzers for the latter.

Generally, static analysis can be categorized by three broad categories, ranked
in increasing order of rigor, as follows:

1. Code compliance and metrics analysis
2. Integrity analysis
3. FV (formal verification)

Code compliance checks source code against some set of defined syntactic
rules that are deemed to be good practice. Tools that support code compli‐
ance often include metric analysis aimed at assessing code complexity, which
includes measures such as:

• Cyclomatic complexity (the number of decision points in a module)
• Path complexity (the number of possible paths through a code module)

Code compliance checkers can build confidence in the quality of the code
through identifying poorly constructed code, syntactic nonconformance, or
complex control flow that may lead to defects. This can reduce, rather than
eliminate, the probability that the code at hand exhibits unexpected behavior.

Generally, static analysis techniques best suited for verifying and validating
a software system will depend on factors such as the defined service

185

https://www.misra.org.uk

availability within a SLO/SLA (service level objective or agreement). In this
case, code compliance is applicable to all levels of SLO and SLA.

Integrity analysis seeks to ensure that a program never enters a state that is
undefined by a programming language. This usually equates to runtime
errors, including reading past the end of an array, reading an uninitialized
memory location, or dividing by zero. It also considers language-
independent defects such as buffer overflows or any concurrency issues that
may undermine the correct execution of code (e.g., data race, race condi‐
tions, etc.) or that concern interactions between concurrent modules that are
unintentional, such as deadlocks.

Integrity analysis is thus the most applicable analysis that can benefit the
performance and availability of a system. That is, the removal of common
vulnerabilities ensures that a system will perform without unexpected
anomalies, especially for systems requiring higher availability (from 99.9%
and upward). A system is not functionally correct if there are integrity
errors, and integrity analysis can be perceived as a subset of formal
verification.

Fortunately, most integrity analysis tools do not require in-depth expertise in
either SA or FV, because a plethora of tools can be applied off-the-shelf,
automatically and at scale, including Polyspace, CodeSonar, Frama-C, and
Facebook Infer.

Formal verification aims to prove functional properties mathematically about
a given program against a set of requirements or specifications. It can pro‐
vide guarantees regarding the behaviors of a system that testing cannot. To
do so, a program must first be formalized into a model or abstraction, and a
program’s functional requirements are then defined in a formal specification
language. FV tools thus are typically semi-automated and require expertise
in formal methods to form models and specifications.

FV is often only necessary for systems requiring a service availability of
99.99% and upward, because the rigor and manual effort are costly relative to
risks averted (see ALARP).

Static analysis and formal verification techniques are underused, given the
misconception that they are unnecessarily rigorous and complex. This
unfortunately hinders SREs from considering tools that may guide the elimi‐
nation of burdensome and expensive defects arising in production systems.
SREs can likely deploy SA tools with ease and without an overhaul of infra‐
structure while gaining the system-assurance benefits SA and FV techniques
provide.

97 Things Every SRE Should Know186

https://oreil.ly/7qbZd

The Importance of Formal
Specification
Hillel Wayne

When dealing with very complex systems, finding bugs becomes much more
difficult. Although a wide variety of tools can help you, these tools primarily
help identify why a bug has happened. We’ve done very little as an industry
to help you avoid having the bug in the first place.

Why is that? In part, we are still used to thinking of bugs as faults in the code
—uncaught nulls, off-by-one, and so on, but the subtlest and most dangerous
bugs are problems with the design. They are cases when everything is locally
correct but interact in a way that’s globally incorrect.

Consider mixing error retries and rolling deployment. The client’s initial
request and first retry could be handled by different servers running differ‐
ent versions of the code. Any unexpected behavior wouldn’t be the fault of
the client, server, or load balancer, but arise from the interplay among them.

Nobody has made a mistake. Every local component is doing exactly what we
told it to do. Given the complexity of the system, it becomes difficult to
understand the consequences of those actions at a global level.

The only way to deal with these is by the hard work of intelligent experts. Us.
But just as we have tools to help us write code, we also have tools that help us
write designs. One powerful technique is to write a software model of the
system and then simulate that model for bugs.

Because we only model the system, not implement it, we can write out a
high-level overview in a fraction of the time that it would take to code it all
up. Then we can use tools to see whether it satisfies our system requirements.
This is called formal specification, also known as debuggable designs. Formal
specs help you successfully design up front, saving time, money, and sanity.

This could be seen through two examples. By using formal specifications,
Amazon was able to find a 35 step bug in DynamoDB that slipped through
extensive design review, code review, and testing. Rackspace applied formal

187

https://oreil.ly/XyNUA

specification late in a project and found a requirements mismatch that
required them to redo a year of work. One team writing an embedded oper‐
ating system found that writing formal specs reduced their overall code size
by a factor of ten.

If formal specification is so powerful, why don’t people use it? Mostly for
social reasons. Most of the work in formal specification has focused on a few
high-priority technologies such as telecommunications and chipsets. As soft‐
ware becomes more critical and increasingly complex over the past half-
decade, we’ve realized its broader potential to benefit software engineers
outside of critical systems.

Formal specification does not work miracles. It doesn’t write the code for
you. It doesn’t replace our skills as engineers, but it’s a powerful means of
finding bugs in our systems before we spend months building them, before
we’re awoken at 3 a.m. to deal with an outage. You wouldn’t build a house
without a blueprint. Why would you build a million-dollar system without
one?

97 Things Every SRE Should Know188

https://oreil.ly/G6y0h
https://oreil.ly/0rToL

Risk and Rot in
Sociotechnical Systems
Laura Nolan

We work in organizations made up of people, all subject to outcome bias and
prone to underestimate or overestimate risks, depending on to what extent
normalization of deviance has set in on our team. Executives can become far
removed from the reality of life at the front line, and their appreciation of
probabilities of adverse events can be strongly affected by recent outcomes.

There is a phenomenon in operations that I’ve heard called the paradox of
preparation—an organization that is effectively managing risks and prevent‐
ing problems can fail to be recognized as such. Bad outcomes aren’t actually
occurring because of this preventive work, so decision makers may come to
believe that the risks are significantly lower than they actually are. Therefore,
leaders may conclude that the organization that is preventing the negative
events from occurring isn’t an efficient use of resources anymore.

One of the major functions of an SRE or operations team is to manage risks
proactively. This kind of work covers a broad spectrum, from keeping sys‐
tems patched, rotating certs and tokens, and validating backups, to less-
routine things like writing runbooks and recovery tools, running disaster
tests, performing production readiness reviews for new systems, and doing
thorough reviews of near-miss production incidents. These are also the kinds
of work that can fall by the wayside all too easily when a team is overloaded
or understaffed. The eventual outcome is likely to be a crisis and the start of
a new cycle of investment.

An important part of our job, therefore, is to make the value of our work
visible to avoid the organizational rot that makes us underestimate risk and
underinvest in reliability. We live in a data-driven world, but, of course, we
can’t track the incidents that don’t happen because of good preventive work.
However, at times when we aren’t in crisis mode, we can do many other
things to show how our work contributes to increasing reliability.

189

We can create internal SLOs for the routine jobs we do to manage risks and
set up dashboards to show whether we’re meeting those SLOs. Write
production-readiness standards that you’d like your services to meet, cover‐
ing areas such as change management, monitoring and alerting, load balanc‐
ing and request management, failover, and capacity planning. Track how
your services meet those standards (or don’t). Set up chaos engineering and
game days to test how your services deal with failure and track those results
as you would postmortem action items. Load test your systems to under‐
stand how they scale and address bottlenecks you will encounter in the next
year or two. Take near misses and surprises seriously and track them along
with action items. All these things help prevent a slide into normalization of
deviance as well as giving visibility into our work.

As engineers, we have a responsibility to communicate clearly about risks in
our systems and the proactive work we do to reduce them. However, the fish
rots from the head down; engineering leaders ultimately make critical deci‐
sions. Therefore, they must be acutely aware of outcome bias and the risk of
disconnects in understanding of risk between front-line engineers and them‐
selves. Most important, they must be mindful of the crisis–complacency
cycle and maintain an appropriate continuous investment in resilience and
reliability to avoid crisis.

97 Things Every SRE Should Know190

SRE in Crisis
Niall Murphy
Microsoft

Inflamed race relations leading to widespread riots. New startups in Silicon
Valley. Virulent anti-immigration feeling stoked in the UK. A lethal pan‐
demic, coming from Asia. It sounds like today, but it was 1968.

In Germany, a younger, smaller NATO, then on the cutting edge of comput‐
ing, held what has a good claim to be the first software engineering confer‐
ence in history. In keeping with the state of the world at the time, the
conference declared a crisis: our ability to write high-quality software, func‐
tioning reliably, was under strain as machines became more powerful and
complexity grew.

One of those recognizing the crisis was the young computer scientist Edsger
Dijkstra, who wrote, “The design of any large sophisticated system is going
to be a very difficult job, and whenever one meets people responsible for
such undertakings, one finds them very much concerned about the reliability
issue, and rightly so.”

His solution was to push for consistency, discipline, and rigor in program‐
ming. This led to approaches now considered foundational—structured pro‐
gramming, for example—although, as with all novelty, initially treated with
suspicion. In honor of Dijkstra, then, I declare the same: SRE is in crisis. Our
old approaches will not solve it.

Let’s face it, most of what we have in the profession as templates for behavior
or reasoning about systems relies on a body of knowledge with little evidence
to back it up. Four years after publication of the SRE book, many in the pro‐
fession are still effectively copying and pasting their standard operating pro‐
cedures from the pages of that book, understandably but wrongly.

I look around and I see not much that would pass for rigor in our profession.
Dijkstra’s own pioneering work on the foundations of distributed systems—
semaphores, mutexes, self-stabilization, and many others—is perhaps the
closest we have, but it is only for the computer science side of what we do.
Much that we do in SRE is outside of that context—perhaps even most of

191

https://oreil.ly/OFuCX
https://oreil.ly/jhtgm
https://oreil.ly/HT2Ow
https://oreil.ly/GLOPz
https://oreil.ly/GLOPz
https://oreil.ly/eEjZg
https://oreil.ly/eEjZg
https://oreil.ly/rHoso
https://oreil.ly/idraB
https://oreil.ly/_omO2

it—yet we generally have unquestioned lore and (at best) rules of thumb as a
basis for that work.

A few examples:

• Why is the toil-to-project work ratio 50:50? Is that the right number,
rather than 20:80, or indeed having no fixed ratio but a flexible
approach?

• Do we have any way to understand why system-level changes (e.g., to
microservice meshes) should be successful, other than trying them and
seeing?

• If SLOs are such a good model, what do we do when one sufficiently bad
incident destroys an error budget for an entire year?

In many ways, the problems of 1968 are the problems of today—foremost of
which is complexity. Complexity will kill us. Indeed, it is killing us today, and
we seem to have no defense that works—other than a holistic practice that
SRE aspires to but very often falls short of.

In 1968, A. G. Fraser of the Cambridge Mathematical Laboratory said: “I just
want to make the point that reliability really is a design issue, in the sense
that unless you are conscious of the need for reliability throughout the
design, you might as well give up.” The promise of SRE is precisely that; I do
not see it fulfilled.

Treat it with suspicion if you must, but perhaps this, too, will come to be seen
as the beginning of an inevitable realization: we don’t know what we’re doing,
or why it works, or even whether it works—and yet it is more important than
ever to get it right. Otherwise, our 1968 will end up looking like 1986.

97 Things Every SRE Should Know192

https://oreil.ly/xqVIM
https://oreil.ly/Iui76
https://oreil.ly/QZgcQ

Expected Risk Limitations
Blake Bisset
Microsoft Azure

I’ve generally employed two major risk analysis methodologies.

The first is architectural analysis. This is typically looking at perceived or
unrealized risk through some flavor of FMA (failure mode analysis): FMEA
(failure mode and effects analysis), FMECA (failure mode, effects, and criti‐
cality analysis), or even just a basic folks-sitting-at-a-whiteboard session
looking for common anti-patterns in the design of the system and jotting
them down, like lack of circuit breaking, throttling, exponential backoff and
retry, jitter—that kind of stuff. These can be purely qualitative and subjective
and still have value, but they also rely heavily on what you already know
about your system. Or, rather, on the mental map of your system and what
you think you know about it.

The second is data-driven analysis, when we add historical reliability data
from realized risk to the FMA process (failure modes, effects, and diagnostic
analysis [FMEDA]) or build heat maps of contributing factors for outages
across a number of dimensions—such as type of failure, services involved,
and geography—and associate them with user impact based on degradation,
number of affected users, and duration.

The goal here is to arrive at an annualized (or other periodic) expectation of
the realized impact of a particular risk. These are short essays, so I won’t go
into the details of any of these methodologies, since an internet search
should put you on the right path quickly. You can pick as simple or complex
a risk-modeling structure as you need, based on how much complexity
you’re dealing with and how much of the low-hanging fruit you’ve already
knocked off the branches of your system. The internet will provide. Probably.
After all, it’s a complex system, too, and prone to its own emergent failure
conditions.

Building these kinds of data maps can help us find what our best areas for
investment are, not only for the things that are our top “root causes,” but also
for the kinds of problems that aren’t the leading contributor to most or even
many outages but have a contributing role in many of them. In the past, I’ve

193

been able to tease out things like how a frustrating throttling system that
everyone thought was good enough not to invest in replacing was actually
the seventh most common contributing factor to downtime at our company,
even though it was only identified as the “root cause” in less than 2% of
incidents.

This approach is powerful as well, but like the architectural one, it, too, is
limited. Data-driven analysis can only give us this kind of investment guid‐
ance about the problems that we already in some degree know we have. Or
should know anyway. They’re already in our risk registry—things we’ve seen
before and likely have seen relatively frequently if a solid, quantifiable history
of realized risk is associated with them.

Where the approach struggles to deliver an annualized expected risk is in
dealing with known but unquantifiable risks: the things we enter in the risk
registry because we think they’re probably not good or will be a problem
someday but which we can’t actually characterize with any data.

As a result, we can have trouble deciding how to balance the work required
to fix them against features and other more measurable tech debt, or funding
the project and defending the work against such competing priorities even if
we ourselves believe it to be critical. The approach breaks down entirely on
the actual black swans (or electrified pelicans) and unknown unknowns.

Much like our esteemed editors’ content length rules, however, I think there
is a way to get past this limitation. So I’ll tell you about it in the next
installment!

97 Things Every SRE Should Know194

Beyond Local Risk:
Accounting for Angry
Birds
Blake Bisset
Microsoft Azure

Data-driven analysis can only provide the kind of engineering investment
guidance we want when applied to problems we already know we have—or
should know, anyway. They’re already in our risk registry: things we’ve seen
before and likely have seen relatively frequently if we actually associate a
solid, quantifiable history of realized risk with them.

In dealing with known but unquantifiable risks, or the actual black swans
and unknown unknowns, our best efforts often fail us, and we quickly reach
a place where we need help in the divine or psychotherapeutic sense. Or pos‐
sibly both.

These things will almost never turn up in our data until it’s too late, or if they
do, they will still not be amenable to actual calculations of risk and predicted
impact and cost over time. Although all these things are critical tools in the
life of an engineer, they’re not inherently reliable, or at least not very likely to
produce the kind of evidence that will convince a plurality of VPs to impose
a Code Yellow.

This is where things get interesting, however. Over the course of building
taxonomies of failure at a few companies, I’ve become very interested in the
idea of expanding this mechanism beyond a single division or organization.
What might we be able to achieve with a broader shared taxonomy and data
pool? What if we started to treat system failure like an underwriting project?
Actually to build an industry-standard database of failure types and fre‐
quency in different kinds of systems?

What might be achieved from a data-sharing standpoint if the taxonomy of
contributing factors and failure patterns that we’d developed to apply to our
own incident reports, and used to good effect internally, were instead

195

replaced by an open-standard taxonomy and measurement system that could
be used to generate and gather data across many organizations?

If we apply a common taxonomy to these events across the industry and
develop shared incident reporting, combined with that taxonomy of contri‐
buting factors and quantified impact, the quality of the data set we have to
use for pattern generation and frequency–risk projection changes considera‐
bly. What is infrequent for a single provider, even at massive scale, might
become discernible across a number of them. We might begin to shift some
of those known unquantifiable risks to predictable ones or even transform
some of the locally unknown unknowns into known patterns of failure,
against which we can take reasonable precautions in proportion to their
annualized expected impact.

The answer to our unmeasurable or unknown unknowns is the same one
that faced the electrical industry and consumer electronics back when they
were at their early stages, as the computing sector is today. As an industry, we
can aim to build for our information systems what is essentially the same
kind of actuarial tables used for our physical systems.

We’re already predicting the likelihood that an insurer will have to pay out
on a policy due to electrical fires if there is a certain mix of components and
wiring code implementations in our offices. We may be able to do the same
for determining how important it is to implement production canary testing
on a pipeline compared to a relational database, or the average annual
expectation of power outage minutes due to a transformer at our data center
vaporizing a large bird, or even the reliability impact of the relative propor‐
tion of your infrastructure engineers who use Vim versus Emacs. Now that
would be interesting.

Then again, some questions are likely dangerous to try to answer.

97 Things Every SRE Should Know196

A Word from Software
Safety Nerds
J. Paul Reed
Netflix

Any SRE tasked with the care and feeding of even the most modest of serv‐
ices will, inevitably, have a Bad Day™. After the incident plays out, we find
ourselves party to a postmortem. Operational retrospectives—a more accu‐
rate name for what we software developers and operations engineers prac‐
tice, unless your outage resulted in actual death—are likely not new to you.
What may be news is the interest in the concept of safety and the mechanics
of how we learn from incidents in software as individuals, teams, and whole
organizations.

Following are a few insights we software safety nerds have uncovered and are
actively studying, attempting to help us all learn more from these impactful
events:

Leaning into complexity
The rise of web-scale distributed systems over the past 15 years has
renewed interest in understanding the true impact of complexity science
on our field. Many SREs throw the word around colloquially, but it was
Mark Burgess’s configuration management work, described in In Search
of Certainty, that laid the groundwork for us to consider that our sys‐
tems, especially in the cloud, have more in common with quantum phys‐
ics than with physics grounded in equal-and-opposite, cause-and-effect
reactions.

The implications of quantum
Once we accept the true nature of the complexity of our systems, this
calls into question a host of models and methods we’ve traditionally
relied on in incident analysis; suddenly, linear models are woefully ill-
suited to describe incidents. Once linearity falls, so too do “root cause,”
“Five Whys,” and best practices. This can be jarring, but the complex
world we operate in has no use for such concepts.

197

Reimagining of blame
How many incidents has your team attributed to “human error?” A
complex world without linearity also requires us to eschew the concept
of human error as an explanation for incidents. Fundamentally, it serves
as a proxy for “the point at which we decided to stop asking questions.”
A rise in blameless retrospectives is one implementation, but because
blame is an ingrained human reaction to stress, the focus is moving from
lack of blame, an impossible order, toward blame-aware, when we
acknowledge blame’s presence (often by engineers blaming themselves!)
and seek to move past it in a productive way during our incident
analyses.

The people of our systems
The addition of the modifier “sociotechnical” to the description of our
complex systems has increased, too. It acknowledges that SRE work is
not solely pushing code, shepherding data, and keeping bits happy and
machines fed. This work is done by people, and it’s people who directly
contribute to the successes and failures of that system in ways we have
discounted for far too long. We need to change that if we truly want to
improve those systems.

The cultivation of expertise
Finally, this movement is challenging the notion that the sole purpose of
incident analysis is to brainstorm, document, and enact remediation
items. These are important, but the real value for improvement is the
cultivation of expertise in ourselves and each other, not a tuned alert or
additional unit test. The latter solves the incident we had; the former will
solve the next incident we’ll have.

Safety science has a lot to teach SREs about how to improve our work and
the reliability of the systems we care for, but it is a new framing of the prob‐
lem, and that can be understandably uncomfortable. Reach out to the grow‐
ing crew of safety and reliability nerds in the SRE space; the only thing you
have to lose are those late-night pages that make us all miserable.

97 Things Every SRE Should Know198

Incidents: A Window
into Gaps
Lorin Hochstein
Netflix

Incidents force us to confront the reality that our systems don’t always
behave as we expect. It’s an uncomfortable feeling, and we want to have faith
that this won’t happen again. To renew that faith after an incident, we work
to determine why the system broke, but we can learn more from incidents
than just how to prevent a repeat. We can identify a range of gaps—deficien‐
cies that we can potentially address—that exist inside our organizations.

One kind of gap we can recognize is a tooling gap, when we see engineers
having trouble using operational tools. For example, we can identify when
engineers struggle to make sense of feedback from a tool during an incident,
or when they make an error using a tool to make a production change. In
particular, whenever we notice a workaround, someone performing a task the
wrong way, that’s a clue there’s a tooling gap. Information about tooling gaps
should be fed back to the owners of these operational tools.

Another kind of gap is an operational expertise gap. This is when engineers
are missing important operational skills they need to do their jobs effectively.
Perhaps a certain graph on a dashboard was always wrong, because the engi‐
neer who created it didn’t fully understand the metrics query language. It was
only after the incident that somebody noticed. An operational expertise gap
can develop over time, since our systems are constantly undergoing change.
The policy you used when configuring autoscaling may have been the rec‐
ommended approach last year, but it’s now deprecated.

Last, there are resource gaps, when a team doesn’t have enough resources to
handle their workload. There are two reasons to worry about resource gaps.
One is the law of stretched systems: every system will eventually be pushed
to its capacity. Imagine an individual team that’s running at capacity and
receives additional headcount. When they hire someone new, they’ll have
some slack. Inevitably, though, the team will keep taking on more work until
they’re running at capacity again.

199

The other challenge with resource gaps is the law of fluency. This is the phe‐
nomenon when a skilled engineer can gracefully handle some amount of
work overload, and they give no indication that they are working beyond
capacity (“I’m doing fine!”) until they become completely overwhelmed. You
can see the law of fluency in action when engineers feel the need to switch
between different tasks to get all of their work done, such as monitoring a
complex deployment, responding to internal support requests, and doing
development work. This overload increases both the risk of errors and the
risk of burnout on the team. Burnout can lead to team members leaving,
increasing the load on the team even further. The earlier we identify a team
at risk of overload, the less costly it is for the organization to address the
problem.

Each person inside an organization has only a partial understanding of how
the overall system works. Every time an incident happens, we have the
opportunity to learn about the gaps that the incident exposes. By highlight‐
ing these gaps, we can begin to prepare for the future.

97 Things Every SRE Should Know200

The Third Age of SRE
Björn “Beorn” Rabenstein
Grafana Labs

In the first age, SRE was proprietary to Google, and knowledge about it left
the company only by diffusion.

In the second age, SRE was set free. Site Reliability Engineering (O’Reilly) in
2016 made blatantly obvious that a fundamental change was happening from
a weirdly named department within Google to a generally known profession.
The fittingly named SREcon has happened regularly and increasingly suc‐
cessfully since 2014. In the job market, SRE is a downright buzzword,
appearing in résumés and job descriptions everywhere.

The incredible popularity of SRE makes me believe we have reached the late
stage of the second age, and its conclusion will be marked by an interesting
inversion of the current hiring hype: the end of the dedicated SRE role as we
know it.

How? During the second age, many organizations quickly realized that their
much smaller size prevented them from performing SRE exactly like Google.
Even an organization large enough to maintain a dedicated SRE team—most
couldn’t—usually came to the conclusion that they couldn’t just hire a certain
number of SREs to do “that SRE thing.” Instead, every engineer had to
become a part-time SRE. David N. Blank-Edelman’s Seeking SRE (O’Reilly,
2018) documents a number of those stories, including (shameless plug) my
own witness account as a production engineer at SoundCloud.

From that perspective, the high demand for SREs in the work market is
mostly driven by the desire to find someone to spread SRE knowledge
among the other engineers. An organization that has truly arrived in the
third age is one where that has already happened. All engineers can wear an
SRE hat as part of their job, and at least smaller organizations will then stop
hiring dedicated SREs. Instead, an SRE mindset will be an important hiring
requirement for every engineering role.

What necessitates those transitions between ages, you may ask? For the sec‐
ond age, it was the democratization and proliferation of cloud-native

201

https://oreil.ly/n0pxP
https://oreil.ly/EgtxD

technologies. The very insightful definition published by the CNCF showed
that cloud-native technologies allowed even small organizations quickly to
reach a level of complexity and scale at which SRE becomes a necessity.

For the third age, it will be the optimization of the portion of engineers who
work in a dedicated SRE role rather than directly on the actual product. An
organization at second-age maturity, where most engineers act as part-time
SREs, will realize that most of the tasks of the remaining dedicated SREs
could be handed over to service providers, including but not limited to tradi‐
tional infrastructure-focused cloud providers. In fact, the increasing selec‐
tion of higher-order services, which run on top of other cloud services, will
drive most of the opportunity growth.

There is a trade-off, of course. The larger an organization, the more efficient
it is to run a larger part of its stack on its own, but with the steady innovation
of the service providers, the bar is moving up here.

Will we soon enjoy “SRE as a service” so we can completely forget about
operational concerns? On the contrary. In a second-age scenario, it is
actually easier for engineers to get away with a certain amount of operational
ignorance by relying on SREs within the organization. In the third age, most
engineers will be very close to production, enabled by the SRE-inspired tools
and services at their fingertips. To use those effectively, they will require an
SRE mindset.

The unimaginable power of SRE in the third age is that it will (and has to) be
in everyone’s head. The moment universities include SRE classes in their
computer science programs will be a sure sign that the third age has begun.

97 Things Every SRE Should Know202

https://oreil.ly/HIOp3

Contributors

Kurt Andersen
Kurt Andersen is part of the Product-SRE team at LinkedIn.
He has been one of the co-chairs for SREcon Americas and
active in the anti-abuse community for over 20 years. Kurt
has spoken around the world on various aspects of reliability,
authentication, anti-abuse, and security and co-authored

What Is SRE? (O’Reilly). He also works on internet standards through
the IETF and serves on the USENIX Board of Directors and as liaison to
the SREcon conferences worldwide.

Of Margins and Individuals, page 121
The Importance of Margins in Systems, page 123

Daria Barteneva
Daria Barteneva is currently Senior Software Engineer in
Observability Platform in Azure. With a background in
applied mathematics, artificial intelligence, and music, Daria
is passionate about data mining, diversity in tech, and opera.
In her current role, Daria is focused on changing organiza‐

tional culture, processes, and platform to improve service reliability and
on-call experience. Daria is originally from Moscow, Russia, spent 20 years
in Portugal, and now lives in Dublin, Ireland.

Create Your Supporting Artifacts, page 138
Study of Human Factors and Team Culture to Improve Pager Fatigue, page
146

203

https://oreil.ly/d_HOC

Jacob Bednarz
Jacob Bednarz is a snowboarding woodworker who during
the day attempts to build reliable systems out of unrelia‐
ble components. He is currently at Envato, spending his
days on open source, performance, security, and reliability
issues as a site reliability engineer. He irregularly rants at

https://jacobbednarz.com.

Fewer Spreadsheets, More Napkins, page 125

Bouke van der Bijl
Bouke van der Bijl is a software engineer who is always
thinking about the bigger picture. He has experience cre‐
ating and scaling new products at Shopify and DigitalOcean.
In his free time, he reads a lot of books and does training
and coaching for the Dutch Informatics Olympiad, helping

high school kids excel at competitive programming. You can find him online
at https://bou.ke.

There Is No Magic, page 18

Blake Bisset
Blake Bisset got his first legal tech job at 16. Now he’s allowed
to make shaky-fists at the cloud. A startup with a bunch of
kids wondering why they couldn’t watch movies on the inter‐
net led him to Google, where he broke enough things eventu‐
ally to win go/bestpostmortem and leave. Then, as head of

Reliability Engineering at Dropbox, he lost a bet with Niall Murphy and now
stacks turtles in the reliability mines at Azure.

Expected Risk Limitations, page 193
Beyond Local Risk: Accounting for Angry Birds, page 195

Johnny Boursiquot
Johnny Boursiquot is a multi-disciplined software engineer
with over two decades of experience and a love for teaching
and community-building. He stays busy as a trainer, speaker,
and diversity advocate within the Go programming language
community, where he also frequently serves as podcast host,

user group organizer, and conference program committee member. He is a

Contributors204

https://jacobbednarz.com
https://bou.ke

site reliability engineer at Salesforce’s Heroku while also leading engineering
at a burgeoning startup.

The SRE as a Diplomat, page 156
The Forward-Deployed SRE, page 158

Fatema Boxwala
Fatema Boxwala is an engineer who hates code and comput‐
ers. If she could, she would spend all her time cooking, eat‐
ing, and making mediocre art. She’s given the occasional talk
at conferences like LISA and SREcon, but lately she’s been
more involved in the program committees for these confer‐

ences. She lives in Seattle with her personal demons and her roommate,
Kelly. Follow her at https://twitter.com/fatty_box.

Where to SRE, page 34

Michelle Brush
Michelle Brush is a math geek turned computer geek with 20
years of software development experience. She has developed
algorithms and data structures for pathfinding, search, com‐
pression, and data processing in embedded as well as
distributed systems. In her current role as an SRE Manager

for Google, she leads teams of SREs that ensure GCP’s APIs are reliable.
Previously, she served as an Engineering Director for Cerner Corporation,
responsible for the data processing platform for Cerner’s Population Health
solutions. Before that role, she was the lead engineer for Garmin’s automo‐
tive routing algorithm. She is a huge fan of tardigrades.

What Machines Do Well, page 88
Move Fast to Unbreak Things, page 95

Contributors 205

https://twitter.com/fatty_box

Miles Bryant
Miles Bryant is a platform engineer at Monzo, a bank chang‐
ing the way people interact with money. He’s been on the
first-line on-call rota for 2 years, dealing with many late-
night pages, driving forward improvements and in general
trying to make on-call great. His interests include distributed

systems, sleeping well at night, outdoor sports, and PC strategy games.

Effortless Incident Management, page 82
On-Call Rotations that People Want to Join, page 144
The Power of Uniformity, page 164

Karla Burnett
Karla Burnett spends her days figuring out how to make
systems do things they shouldn’t and then preventing them
from doing just that again. She’s currently a staff engineer
working on security at Stripe and, away from work, an avid
crafter and plane enthusiast.

Get Your Work Recognized: Write a Brag Document, page 71

Kristine Chen
Kristine Chen is a staff software engineer at Google and
former SRE. During her time as an SRE, she brought SRE
principles and best practices to mobile applications. A
graduate of U.C. Berkeley, she is best known for revolu‐
tionizing Google’s internal monitoring strategy and

pioneering methods of supporting mobile device reliability remotely. In
her free time, she likes to read, play video games, and hang out with her
corgi.

Holistic Approach to Product Reliability, page 107

Anita Clarke
Anita Clarke’s 14-year career as an award-winning Software
Quality Assurance professional and a 10+ year fashion
blogging career converged to her current path as an engi‐
neering storyteller. As the Senior Managing Editor of
Shopify’s Engineering blog and writer, she brings her

technical editor expertise to help developers craft and share their stories

Contributors206

about their work. She’s shared her technology journey with DevTO, ITAC
Inspiring Tech Careers Conference, and TD Then and Now. @geekigirl
https://www.engineeringstoryteller.ca

Storytelling Is a Superpower, page 69
Make Your Engineering Blog a Priority, page 168

Nati Cohen
Nati Cohen is a production engineer at Here Technologies
and a teaching assistant at the Interdisciplinary Center
Herzliya. Previous experience includes: operations consult‐
ing, software development, *nix administration, and security
research in the Intelligence Corps as well as in multiple

startup companies.

Methodological Debugging, page 61

Narayan Desai
Narayan Desai is an SRE at Google, where he focuses on the
reliability of Google Cloud Platform Data Analytics
products. He has a checkered past, having worked on
scheduling, configuration management, supercomputers,
and metagenomics—always in the context of production

systems.

When SLOs Attack: Pathological SLOs and How to Fix Them, page 105

Ingrid Epure
Ingrid Epure wants to make the world simpler, one pro‐
duction system at a time. She talks and cares deeply about
tech culture and believes it should be more accessible and
open. Ingrid is an international speaker and part of the SRE‐
con EMEA program committee. When she is not busy being

a senior engineer at Netlify, she reads a lot, learns to draw, builds mechanical
keyboards, and nerds out about coffee and music.

You Don’t Know for Sure Until It Runs in Production, page 97
In Search of the Lost Time, page 109

Contributors 207

https://www.engineeringstoryteller.ca

Chris Evans
Chris Evans is the Platform Team lead at Monzo, a bank
changing the way people interact with their money. His
team is responsible for building and operating the Monzo
platform, covering everything from its physical data centers
and networking through to the container scheduling

platform and microservice deployment tooling. Since he joined in March
2018, Monzo has grown by more than four million customers and added
over 1,000 new microservices to production.

Effortless Incident Management, page 82
On-Call Rotations that People Want to Join, page 144
The Power of Uniformity, page 164

Julia Evans
Julia Evans is a software engineer and writer who loves weird
bugs and helping people learn how computers work. She was
a staff engineer at Stripe, where she worked on networking
infrastructure and machine learning. She now runs Wizard
Zines, where she writes and publishes tiny books that teach

computing fundamentals. You can find her at https://jvns.ca.

Why You Should Understand (a Little) About TCP, page 22
Get Your Work Recognized: Write a Brag Document, page 71

Liz Fong-Jones
Liz Fong-Jones is a developer advocate, labor and ethics
organizer, and Site Reliability Engineer (SRE) with 16+
years of experience. She is an advocate at Honeycomb for
the SRE and Observability communities, and previously
was an SRE working on products ranging from the

Google Cloud Load Balancer to Google Flights.

Observability in the Development Cycle, page 16
The Role of Cardinality, page 28

Contributors208

https://jvns.ca

Lucas Fontes
A black hat in another life, Lucas Fontes helped shape
the internet in Brazil in the late ’90s by building ISPs in
remote areas and helping scale the biggest dial-up provider
in the country with over 20 million accounts. In 2018, he
bootstrapped the DigitalOcean Kubernetes team and is now

focused on improving Auth0’s Platform offering. Always Rushing B, Lucas is
also an avid FPS player.

Security Is like an Onion, page 30

Dr. Nicole Forsgren
Dr. Nicole Forsgren is the VP of Research and Strategy at
GitHub. She is author of the Shingo Publication Award–
winning book, Accelerate: The Science of Lean Software and
DevOps (IT Revolution Press), and is best known as lead
investigator on the largest DevOps studies to date. She has

been a successful entrepreneur (with an exit to Google), professor, perfor‐
mance engineer, and sysadmin. Her work has been published in several peer-
reviewed journals.

The Best Advice I Can Give to Teams, page 136

Elise Gale
Elise Gale is a Senior Software Engineer on the Azure
Observability Platform team at Microsoft. She has spent the
last five years working on metrics and telemetry. Past projects
include the alerting engine and query service used internally
for Microsoft Azure critical metrics. Her current focus is

infrastructure and on-call health. Outside of work, she enjoys hiking, biking,
and reading a good book. She holds a B.S. in Computer Science from the
University of Wisconsin–Madison.

Legendary, page 101

Contributors 209

Felix Glaser
Felix Glaser is a Berlin transplant to Canada. He deeply cares
about securing computer systems of any kind. If he’s not
coding, you can find Felix mountain biking and climbing in
the Canadian Rockies.

To All the SREs I’ve Loved, page 131

Jason Hand
Jason Hand works as a senior cloud advocate at Microsoft,
enabling others to build systems safely and sustainably in the
cloud. Co-host of “All Around Azure” and “The Community
Pulse,” Jason educates others on current principles and
practices of building highly available systems and performs

the role of developer relations in those efforts. Author of numerous books
and articles on modern web operations, Jason enjoys sharing his expertise
and guidance to learn and improve continuously.

Unpacking the On-Call Divide, page 78

Alex Hidalgo
Alex Hidalgo is the principal site reliability engineer at
Nobl9 and author of Implementing Service Level Objectives
(O’Reilly, September 2020). During his career, he has devel‐
oped a deep love for sustainable operations, proper observa‐
bility, and using SLO data to drive discussions and make

decisions. Alex’s previous jobs have included IT support, network security,
restaurant work, t-shirt design, and hosting game shows at bars. When not
sharing his passion for technology with others, you can find him scuba
diving or watching college basketball. He lives in Brooklyn with his partner
Jen and a rescue dog named Taco. Alex has a BA in philosophy from Virginia
Commonwealth University.

Site Reliability Engineering in Six Words, page 2
The Reliability Stack, page 10
I Have an Error Budget—Now What?, page 57

Contributors210

https://oreil.ly/C3tL8

Lorin Hochstein
Lorin Hochstein is a senior software engineer on the Delivery
Orchestration team at Netflix. He was previously senior
software engineer at SendGrid Labs, lead architect for
Cloud Services at Nimbis Services, computer scientist at the
University of Southern California’s Information Sciences

Institute, and assistant professor in the Department of Computer Science
and Engineering at the University of Nebraska–Lincoln. Lorin has a B.Eng.
in computer engineering from McGill University, an MS in electrical engi‐
neering from Boston University, and a PhD in computer science from the
University of Maryland.

Making Work Visible, page 74
Incidents: A Window into Gaps, page 199

Matthew Huxtable
Matthew Huxtable is a practitioner and technical leader with
deep experience as a software engineer, systems administra‐
tor, and SRE. His interests lie where deep systems under‐
standing meets human factors in the quest for reliable
systems that users love to use. He’s a lifelong technologist

with experience in startups, enterprises, and running his own small
businesses. Matthew holds two degrees in computer science from the
University of Cambridge and is currently lead SRE at a UK-based neobank.

SRE, at Any Size, Is Cultural, page 45
Everyone Is an SRE in a Small Organization, page 47

Avishai Ish-Shalom
In a world where anything has an API, and everything is
a software problem, this insight has guided Avishai
Ish-Shalom throughout his diverse career, working on
improving the complex sociotechnical systems that create
and operate modern software and promoting the use of

mathematics in system design and operations. After spending 15 years
in various software fields and capacities, Avishai has served as engineer in
residence at Aleph VC, engineering manager at Wix.com, co-founder of
Fewbytes, and consultant to many other companies on software operations,
reliability, design, and culture. Currently, Avishai spends his time as an

Contributors 211

http://Wix.com

independent researcher exploring the application of complexity science
to software engineering.

Methodological Debugging, page 61

Shubheksha Jalan
Shubheksha Jalan is a software engineer keenly interested in
complex problems at the intersection of distributed systems,
reliability, and infrastructure at scale. She enjoys breaking
down hard technical concepts through doodles, illustrations,
and easy-to-understand blog posts. When she’s not too busy

fighting computers, she enjoys being outdoors and doing arts and crafts.

Trading Places: SRE and Product, page 172

Heidy Khlaaf
Heidy Khlaaf is a senior research consultant at Adelard LLP,
where she evaluates, specifies, and verifies the implementa‐
tions of safety-critical systems. She received her PhD from
University College London, where she developed novel
research methodologies, in part with Microsoft Research, to

automate fully the verification of temporal properties over software systems.

Following the Path of Safety-Critical Systems, page 183
Applicable and Achievable Static Analysis, page 185

Justin Li
It was rumored that Justin Li’s first words as a baby were
“production excellence.” The phrase, for Justin, could easily
apply both to distributed systems and music; he’s just as
happy to talk about performance sharding as he is about
proto-future-funk. At Shopify, he is a staff production

engineer. If you were able to buy a lip kit during a massive flash sale, or to
ride a go-kart in headquarters, he helped make that happen.

Thinking About Resilience, page 14

Contributors212

Spike Lindsey
Spike Lindsey is a senior production engineer who has
wrangled many large distributed systems at companies,
including Shopify and Monzo. He believes that on-call
rotations can and should be humane and sustainable. When
not holding a pager, he plays in a string of endless failed

metal bands and enjoys whisky.

If You’re Doing Runbooks, Do Them Well, page 84
Optimize for MTTBTB (Mean Time to Back to Bed), page 148

John Looney
John Looney has been an SRE since 2005, managing most
types of large distributed systems for Google and Facebook.
He has been teaching people to be an SRE for more than 10
years, and is on the SREcon steering committee. He is now a
production engineering manager, supporting the people who

deploy firmware and operating systems to Facebook’s fleet. He hopes to
ensure that open system firmware will be firmware, built for SRE by SRE.

Don’t Take Advice from Graybeards, page 40
Don’t Let Anyone Run Code in Your Context, page 170

Lei Lopez
Lei Lopez is a site reliability engineer based in Montreal,
Canada. She previously worked on building tools for incident
response as well as for tracking and improving the quality
of production systems at Shopify. Instead of climbing or
baking artisanal bread, she likes to do improv comedy, watch

pro wrestling, and read through mountains of library books.

Heroes Are Necessary, but Hero Culture Is Not, page 142

Contributors 213

Andrew Louis
Andrew Louis is a senior software engineer at DigitalOcean,
where he works on building out DigitalOcean’s constantly
growing stack of networking products. Prior to that, he
worked at Shopify as a production engineer, hardening the
storefront asset delivery pipeline, and supercharging last-

mile content delivery. Andrew is an unapologetic Drake stan and an avid
open-source enthusiast.

Facing That First Page, page 42
The Maestros of Incident Response, page 80

Rita Lu
Rita Lu is a senior site reliability engineer at Google, where
she currently works on large-scale serving infrastructure for
YouTube, with a focus on capacity management. She enjoys
solving systems problems and finding creative ways to run
software in the most efficient way possible while respecting

SLOs. Previously, she has worked at Shopify. When she’s not developing stuff
or looking at graphs, she likes to read, ride her motorcycle, do yoga, and play
the piano.

Mitigating and Preventing Cascading Failures, page 150

Charity Majors
Charity Majors is the CTO and co-founder of honeycomb.io,
previously with Parse, Facebook, and Linden Lab, and an
operations engineer by trade. Peat is life. Code is the enemy.
Why do I always end up responsible for the databases?

Infrastructure: It’s Where the Power Is, page 12
Observability in the Development Cycle, page 16
The Role of Cardinality, page 28

Caitie McCaffrey
Caitie McCaffrey is a Backend Brat and Distributed Systems
diva. She currently is the architect and developer manager of
the Azure Sphere Security Services, where she’s working
to secure IoT devices. Caitie has spent her career building
large-scale services and systems at Twitter, 343 Industries,

Contributors214

Microsoft Game Studios, and HBO. She has credits on several video games,
including Gears of War 2, Gears of War 3, Halo 4, and Halo 5.

On-Call Health: The Metric You Could Be Measuring, page 152
Helping Leaders Prioritize On-Call Health, page 154

Tamara Miner
Tamara Miner has worked on infrastructure and developer
tools for more than 14 years in the United States and Europe.
She is currently the engineering manager of Improbable’s
Partner Engineering team in London. Previously, Tamara
launched multiple SaaS products for London startups, Riot

Games, and Microsoft Azure Services. She is a recipient of the Forbes 30
Under 30 and the Microsoft Xbox Women in Gaming Rising Star awards.
She loves food and robots and spends her spare time tinkering with both.

How Startups Can Build an SRE Mindset, page 63
Unexpected Lessons from Office Hours, page 111

Effie Mouzeli
Effie Mouzeli studied physics and distributed scientific
computing but didn’t turn out to be a physicist or a sci‐
entific computer scientist. She has worked as a systems engi‐
neer/SRE at a number of startups and small organizations
(most of which are not with us anymore), where her respon‐

sibilities were usually in automation and infrastructure architecture and
working closely with developers. Currently, she is on the SRE team that takes
care of Wikipedia and its sister projects at the Wikimedia Foundation.

How Wikipedia Is Served to You, page 20
The Human Baseline in SRE, page 117

Arshia Mufti
Arshia Mufti is an infrastructure software engineer from
Kashmir, living in Toronto.

Bytes per User Value, page 166

Contributors 215

Brian Murphy
Brian Murphy is a Site Reliability Engineering Manager
working for G-Research in London, UK. He has spent the last
4 years on his SRE journey, doing every job from solo SRE
to building and managing SRE teams. He gave his first public
talk at SREcon EMEA 2019, and he focuses his positive

attitude and energy into organizational and cultural change.

Metrics Are Not SLIs (The Measure Everything Trap), page 103

Niall Murphy
Niall Murphy is a senior lead in Azure site reliability engi‐
neering for Microsoft. He is the instigator, co-author, and
co-editor of the best-selling, award-winning Site Reliability
Engineering (O’Reilly, 2016) and numerous other papers,
talks, and books. He is probably one of the few people in the

world to hold degrees in computer science, mathematics, and poetry studies.
He lives in Dublin with his wife and two special-needs children; for fun, he
does landscape photography.

Do We Know Why We Really Want Reliability?, page 4
SRE in Crisis, page 191

Daniella Niyonkuru
Daniella Niyonkuru is a production engineer at Shopify,
where she builds a better, faster, and more resilient platform.
Projects she has worked on include disaster recovery tools,
data corruption detection, and incident management tooling.
Before entering the SRE world, Daniella was an aircraft

system software specialist and researched formal model-driven development
for embedded systems.

Integrating Empathy into SRE Tools, page 90
Using ChatOps to Implement Empathy, page 93

Contributors216

https://oreil.ly/0nWyn
https://oreil.ly/0nWyn
http://www.edge-cases.photos

Laura Nolan
Laura Nolan is a serial part-time master’s degree student and
SRE tech lead who enjoys making both distributed systems
and teams work better. In her spare (ha!) time, she writes a
regular column for ;login: magazine. She is a senior staff
engineer at Slack in Dublin, Ireland.

Complex: The Most Overloaded Word in Technology, page 133
Important but Not Urgent: Roadmaps for SREs, page 178
Risk and Rot in Sociotechnical Systems, page 189

Joan O’Callaghan
Joan O’Callaghan is the Site Operations Lead at Udemy. She
has worked in SRE and Incident Management (in one form
or another) for 14 years. Iterative improvements are her
favorite thing. She likes to host and write blameless post-
mortems and take long walks on the beach where she has

imaginary arguments with people that don’t like reliability as much as she
does.

Auditing Your Environment for Improvements, page 49
How to Change Things, page 59

Todd Palino
Todd Palino is a senior staff engineer in site reliability at
LinkedIn on the Capacity Engineering team, where his team
is creating a framework for application capacity measure‐
ment, analysis, and change intelligence. Prior to that, he was
responsible for architecture, day-to-day operations, and tools

development for one of the largest Apache Kafka deployments. He is also
the co-author of Kafka: The Definitive Guide (O’Reilly). Out of the office, you
can find him at conferences like SREcon and LISA, sharing his experience
from years in SRE technical leadership. Or maybe out on the trails, training
for the next marathon.

It’s Okay Not to Know, and It’s Okay to Be Wrong, page 67

Contributors 217

https://oreil.ly/XWPmr

Eva Parish
Eva Parish has worked as a technical writer for the past eight
years, creating documentation for a variety of audiences,
including developers, system administrators, and nontech‐
nical end users. Besides writing the docs herself, Eva is
passionate about creating a culture of documentation within

and across technology organizations and loves mentoring others on their
writing. Outside of her daily work, Eva is an accomplished conference
speaker. She also enjoys learning languages and has been studying Russian
for the past five years.

Create Your Supporting Artifacts, page 138

Dawn Parzych
Dawn Parzych is a developer advocate at LaunchDarkly,
where she uses her storytelling prowess to write and speak
about the intersection of technology and psychology. She
enjoys helping people be more successful at work and in life.
She makes technical information accessible, avoiding buzz‐

words and jargon whenever possible. Dawn regularly speaks at conferences
and virtual events. Her articles have appeared in numerous technical
publications.

The Performance Emergency Fund, page 176

Suhail Patel
Suhail Patel is an engineer on the Platform team at Monzo.
He works on surfacing and fixing deviant behavior in core
infrastructure components such as Kubernetes, Cassandra,
etcd, and much more, across distributed systems. Typically,
you’ll find Suhail with headphones, listening to electronic

music while he works; some have noted a correlation between the beats-per-
minute (BPM) of the music and Suhail’s thought process.

Effortless Incident Management, page 82
On-Call Rotations that People Want to Join, page 144
The Power of Uniformity, page 164

Contributors218

Jennifer Petoff
Jennifer Petoff is the global head of SRE Education at
Google and is based in Dublin, Ireland. She is one of the
co-editors of the best-selling book, Site Reliability Engineer‐
ing, and lead author of Training Site Reliability Engineers
(O’Reilly).

Why Training Matters to an SRE Practice and SRE Matters to Your Training
Program, page 162

Jake Pittis
Jake Pittis is a software engineer based in Montreal, Canada.
When he’s not playing jazz piano or macerating peaches, he
works on front-end and inter-service networking at Stripe,
with a focus on reliability and developer productivity.

Sometimes the Fix Is the Problem, page 99

Bart Ponurkiewicz
Bart Ponurkiewicz is a Senior Site Reliability Engineer at
Google working on reliability of mobile applications. In the
past few years Bart worked on improving product reliability
on multiple teams spanning pipelines, storage systems, and
user-facing products like Google Photos. He works best in

moments of uncertainty, where abstract situations require quick thinking
and creative solutions. Trouble is Bart’s middle name as he loves adventures
and active lifestyle including paragliding, scuba diving, and riding his
motorcycle.

Holistic Approach to Product Reliability, page 107

Contributors 219

https://oreil.ly/0nWyn
https://oreil.ly/0nWyn
https://oreil.ly/mYTY1

Ashley Poole
Ashley Poole is an experienced engineer and technical lead
with a background across infrastructure, site reliability, and
software engineering disciplines. He is an avid site reliability
engineering advocate and has a keen focus on improving the
developer experience wherever possible. He is passionate

about sharing knowledge and has spoken at various user groups and confer‐
ences. He is also co-organizer of a software development user group based
in the UK.

Solo SRE: Effecting Large-Scale Change as a Single Individual, page 53

Björn “Beorn” Rabenstein
Björn “Beorn” Rabenstein is an engineer at Grafana. He is
best known for his ambition to get involved in as many SRE
books as possible. Or perhaps for his contributions to the
Prometheus project. In previous lives, he was a production
engineer at SoundCloud, an actual SRE at Google, and a

number cruncher for science.

The Third Age of SRE, page 201

J. Paul Reed
J. Paul Reed began his career in the trenches as a build/release
and operations engineer. After launching a successful con‐
sulting firm, he now spends his days as a senior applied
resilience engineer on Netflix’s Critical Operations and
Reliability Engineering (CORE) team, focusing on incident

analysis, systemic risk identification and mitigation, applied resilience engi‐
neering, and human factors expressed in the streaming leader’s various soci‐
otechnical systems.

A Word from Software Safety Nerds, page 197

Frances Rees
Frances Rees (née Johnson) serves reliable databases to the
Cloud as a senior site reliability engineer at Google Dublin.
Previously, she has been the technical lead for SRE on the
Google Maps Platform and has cochaired SREcon APAC
since 2019. She holds degrees in mechatronic engineering

Contributors220

and computer science from the University of Adelaide. Outside of work, she
enjoys weaving chainmail (the metal kind), winning Tetris Battle, and attend‐
ing to two feline overlords.

Dear Future Team, page 36
Why I Hate Our Playbooks, page 86

Tanya Reilly
Tanya Reilly is a principal software engineer in the Architec‐
ture group at Squarespace. Before Squarespace, she spent 12
years wrangling infrastructure at Google. In her free time,
she likes to code on trains, watch cartoons with her kid, study
Arabic, and play guitar (badly). She blogs at http://noidea.dog.

Use Your Words, page 32
Test Your Disaster Plan, page 160
That 50% Thing, page 181

David K. Rensin
David K. Rensin is Senior Director of Engineering in the
Office of the CFO, where he serves on a small team of techni‐
cal advisers to Alphabet’s CFO. He provides guidance on the
appropriate allocation of Google’s capital to its various busi‐
nesses and long-term technical investments. Prior to that,

Dave founded Customer Reliability Engineering (CRE) and ran Google’s
global network capacity planning. He has more than 25 years’ experience
designing and delivering planet-scale cloud and mobile products. Prior to
joining Google, Dave worked at Amazon on its classified (now declassified)
C2S project. As an entrepreneur, he has cofounded and sold several busi‐
nesses, including one (Riverbed Technologies) for more than $1 billion, and
has served as an officer in two publicly traded companies (Omnisky and
Aether). He is also a best-selling author and editor with 16 US patents to his
name. Dave earned a degree in statistics from the University of Maryland
and is married with three children.

The Order of Operations for Getting SLO Buy-In, page 140

Contributors 221

http://noidea.dog

Jacob Scott
Jacob Scott is a software engineer currently focusing on relia‐
bility at Stripe. He is an enthusiastic participant in the resil‐
ience engineering community and passionate about how to
apply learnings from modern safety science to real, complex
sociotechnical systems.

Four Engineers of an SRE Seder, page 8

Ben Sigelman
Ben Sigelman is a co-founder and the CEO at LightStep, a
co-creator of Dapper (Google’s distributed tracing system),
and a co-creator of the OpenTracing and OpenTelemetry
projects (both part of the CNCF). Ben’s work and interests
gravitate toward observability, especially where microservi‐

ces, high transaction volumes, and large engineering organizations are
involved.

Design Goals for SLO Measurement, page 55

Murali Suriar
Murali Suriar is a lapsed computer science graduate, turned
network engineer, turned SRE, currently working on storage
systems at Google.

An Overlooked Engineering Skill, page 76

Avleen Vig
Avleen Vig is an industry veteran with over 20 years of
experience, including 10 years as a remote engineer. As a
production engineer at Facebook, he works to build the next-
generation infrastructure platforms for the company.

Remotely Productive or Productively Remote, page 119
You See Teams, I See Product, page 174

Contributors222

Salim Virji
Salim Virji is a site reliability engineer at Google. He develops
reliable engineering practices and processes for Google’s SRE
group and has previously developed distributed consensus
and storage systems. Salim’s interests include distributed
systems and machine learning. Salim received an AB in

Classics from the University of Chicago.

The Importance of a Management Interface, page 24
When It Comes to Storage, Think Distributed, page 26

Vinessa Wan
Vinessa Wan has been working in product project manage‐
ment for the past 10 years. In her past six years at the New
York Times, she has worked in R&D and product discovery
and now oversees the Operations Engineering portfolio. In
her spare time, she loves to hike and play music.

Building Tools for Internal Customers that They Actually Want to Use, page
113
It’s About the Individuals and Interactions, page 115
Sneaking in Your DevOps Deliciously, page 127

Hillel Wayne
Hillel Wayne is a formal verification consultant, the author of
Practical TLA+, and a member of the Alloy board. You can
find his work at www.hillelwayne.com. In his free time, he
juggles and makes chocolate. He’s legally allowed to deliver
babies in Illinois.

The Importance of Formal Specification, page 187

Thai Wood
Thai Wood helps teams build better systems and improve
their ability to effectively respond to incidents. A former
EMT, he applies his experience managing emergency situa‐
tions to the software industry. He writes about resilience
engineering each week at ResilienceRoundup.com.

With Incident Response, Start Small, page 51

Contributors 223

https://oreil.ly/7EdsO
http://www.hillelwayne.com
https://resilienceroundup.com/

Vanessa Yiu
Vanessa Yiu is a site reliability manager based in London.
She has more than a decade of experience in operating
enterprise-scale platforms as well as managing global engi‐
neering teams. She is a speaker, cochair, and committee
member of USENIX SREcon and is involved in a number

of organizations that advocate for women in STEM. Outside of the office,
Vanessa can most often be found at her workbench, crafting jewelry, or
painting and engraving in different forms of art work.

Bootstrapping SRE in Enterprises, page 65
Effecting SRE Cultural Changes in Enterprises, page 129

Denise Yu
Denise Yu is a senior software engineer, currently at GitHub,
previously at Pivotal R&D and Mergermarket. She loves
growing engineering teams into product-oriented, high-
trust, cross-functional organisms. She speaks regularly at
conferences and meetups in North America, Europe, and

Asia on a wide variety of topics, ranging from continuous delivery to site
reliability engineering principles, explained through cats. Outside of software
engineering, she enjoys creating digital art, playing Japanese RPGs, and
listening to Taylor Swift on endless loop.

Building Self-Regulating Processes, page 6
Sustainability and Burnout, page 38

Contributors224

Index

A
a student should be able to (ASSBAT),

162-163
abstractions, 77
accidental complexity, 133
ACKs, 22-23
allostatic load, 121
Apache Traffic Server (ATS), 20-21
API, 25, 89, 166
application layer, 20
application programming interface (see

API)
architectural analysis, 193-194
ASSBAT (a student should be able to),

162-163
ATS (Apache Traffic Server), 20-21
audits, 49
automation software, 24, 88-89, 93-94
autoscaling, 14
availability, 9, 183-184

B
bandwidth, human, 6
black swan event, 58, 194
Blank-Edelman, David N., 201
blogs, 168-169
brag document, 71-72
Brooks, Fred, 41, 133

bugs, 23, 95, 99, 187
(see also debugging)

bulkheads, 14
Burgess, Mark, 197
burnout, 38, 40, 50, 90-94, 121, 148, 153,

200

C
caching, 14-15
caching layer, 20-21
capacity, 49
cardinality, 28-29
cascading failures, 150-151
CDN (content delivery network), 20
Challenger Space Shuttle, 46
changes, 59-60, 129-130, 156, 159, 166-167

(see also cultural changes)
chatbot, 94

(see also ChatOps)
ChatOps, 93-94
Chesterton's gale, 32-33
CI/CD (continuous integration/continu‐

ous delivery), 109
circuit breakers, 14
client satisfaction, 45
cloud-native technologies, 201
code, 181-182
code compliance, 185-186

225

(see also cyclomatic complexity, path
complexity)

code ownership, 8
CodeSonar, 186
collaboration, 69, 74, 85, 119, 137, 147, 159
Common Vulnerabilities and Exposures

(CVEs), 131
communication, 119, 136, 147
Community of Practice, 137
complex system, 134

(see also complexity)
complexity, 99-100, 133-134, 192

(see also accidental complexity, essen‐
tial complexity)

content delivery network (CDN), 20
context switching, 18, 74
continuous integration/continuous deliv‐

ery (CI/CD), 109
control plane, 24
Conway's law, 21, 174
Conway, Melvin, 174
creativity, 121-122
crisis, 189-200
crisis-complacency cycle, 190
critical user interactions, 108
cultural changes, 127, 129-130
culture, 68, 83, 85, 168

(see also hero culture, team culture)
customer acquisition, 5
customer experience, 106
customer satisfaction, 63, 66, 103
customer service, 171, 177
CVEs (Common Vulnerabilities and

Exposures), 131
cybersecurity, 30-31
cyclomatic complexity, 185

D
data layers, 25
data-driven analysis, 193-196
Datadog, 94

DDoS (distributed denial of service), 131
debuggable design (see formal specifica‐

tion)
debugger, 17
debugging, 16-17, 28-29, 33, 61-62, 98
DeGrandis, Dominica, 124
dependency, 18, 107
deployment cadence, 95-96
design documents, 32
device encryption, 30
DevOps culture, 127
diagrams, 76-77
Dijkstra, Edsger, 191
disaster plans, 160-161
disaster recovery (DR), 160
distributed denial of service (DDoS) , 131
distributed storage systems, 26-27
distributed teams, 175
DNS, 20
documentation, 32-33, 49, 53, 61, 71-72,

84, 138-139
(see also playbooks, runbooks)

DR (disaster recovery), 160
drain script, 171

E
Eisenhower matrix, 178
Eisenhower, Dwight D., 178, 179
embedded model, 158
emotional responses, 42
empathy, 90-94, 116, 121, 147, 149, 158,

172
error budgets

reliability and, 10-11, 45, 55
uses of, 9, 57-58, 64, 105-106, 122, 140,

176
essential complexity, 133
estimations, 125-126

F
Facebook Infer, 186

Index226

failovers, 14
failure mode and effects analysis (FMEA),

193
failure mode, effects, and criticality analy‐

sis (FMECA), 193
failure model analysis (FMA), 193
failure modes, effects, and diagnostic anal‐

ysis (FMEDA), 193
fallback plans, 160-161
fallbacks, 14
fdSRE, 157-159
feature flagging, 97
feedback, 7, 66, 113-114, 153

peer, 72
feedback loops, 38-39, 105, 114, 147, 172
Fermi problems, 125
financial compensation, 41
FMA (failure model analysis), 193
FMEA (failure mode and effects analysis),

193
FMECA (failure mode, effects, and criti‐

cality analysis), 193
FMEDA (failure modes, effects, and diag‐

nostic analysis), 193
formal specification, 187-188
formal verification(FV), 186
forward-deployed SRE (see fdSRE)
Fournier, Camille, 6
Frama-C, 186
Fraser, A. G., 192
freshness, 55
Freudenberger, Dr. Herbert, 38
FV (formal verification), 186

G
gaps, 79, 199
generative culture, 7
GFS (Google File System), 24
Google, 201
Google File System (GFS), 24
group chat tools, 93

(see also ChatOps)

H
happiness at work, 41
health, 152

(see also health checks, mental health,
service health)

health checks, 39
hero culture, 142-143, 182
holistic approach, 107-108
HTTP requests, 22
human baseline, 118

I
IC (individual contributor), 119
idempotency, 88
IEC 61508, 183-184
IMOC (Incident Manager On-Call), 80
In Search of Certainty, 197
incentives, 6-7
incident communication channel, 82
incident lead, 82
incident management, 53-54, 80-83, 93

(see also ChatOps)
incident response, 38, 42, 51-52, 80-81, 99,

118, 148, 197-198
(see also incident reviews)

incident response plan, 51-52, 85
(see also runbooks)

incident retrospectives, 147
incident reviews, 99-100
incident-state documents, 33
incidents, 199-200
individual contributor (IC), 119
infrastructure, 13, 49, 86

(see also infrastructure engineers)
infrastructure engineers, 13
initial public offering (IPO), 30
integrity analysis, 186
Internet of Things (IoT), 108
internet protocol (IP), 131

Index 227

IoT (Internet of Things), 108
IP (internet protocol), 131
IPO (initial public offering), 30

J
job experience, 40-43, 81
job titles, 69, 133

K
Kano models, 64
knowledge distribution problems, 84
Kondo, Marie, 41

L
Larson, Will, 124
latency, 55, 139
latency reduction, 14
latency variable, 14
law of fluency, 200
lightweight architectural decision records,

32
LinkedIn, 67-68
Linus, 23
load adaptation, 14
load balancing, 14
load reduction, 14
load shedding, 14-15
local teams, 175

M
machine-installer service, 170
Making Work Visible, 124
management layers, 25
Manager's Path, The, 6
margin, 121, 123-124
MDM (mobile device management), 30
mean time to repair (MTTR), 108
measurements, 2, 103-104
MediaWiki, 20-21
Memcached, 20
mental health, 40, 121, 148, 152

mental models, 61-62, 76, 96, 133
mentors, 40, 117-118
meta-techniques, 14
metrics, 103-104, 152-153
microservices, 174
mistakes, 67-68, 118
mobile device management (MDM), 30
monolithic applications, 174
motivation, 7, 142
MTTR (mean time to repair), 108

N
Nagle's algorithm, 22-23
Nagoski, Dr. Amelia, 38
Nagoski, Dr. Emily, 38
napkin math, 125

(see also estimations)
NAT (network address translation), 76
negative incentives, 7
network address translation (NAT), 76
No Silver Bullet, 133
NSIT Cybersecurity framework, 30-31
NSQ, 22

O
objectives and key result (see OKR)
observability, 16-17, 28-29, 53, 64, 96, 98
OKR, 66, 155
on-call health, 152-155
on-call roles, 78-79, 90-94, 101, 143,

144-145, 148-149, 172
open-source software, 20-21
OpenStack, 21
OpenTracing, 25
operational definition, 61
operational expertise gaps, 199
opportunity cost, 56
optimization techniques, 14
Out of the Tar Pit, 133
outages, 95-96, 101, 105-106, 108
outcome bias, 189-190

Index228

overprovisioning, 14

P
PagerDuty, 94
pagers, 42-43, 51, 146-149
pair programming, 118
pairing, 6
paradox of preparation, 189
Parser Cache, 20
path complexity, 185
Pennarun, Avery, 124
performance, 7, 123
performance budgets, 176-177
performance reviews, 72
planning (see roadmaps)
playbooks, 33, 86-87
Polyspace, 186
positive incentives, 6-7
PR (pull request), 132
PR descriptions, 32
PRD (product requirements document),

140
prioritization, 14
probability analysis, 2
problem solving, 121-122
product developers, 5
product requirements document (PRD),

140
production, 97-98
production flow rate, 95
productivity, 119
psychological safety, 39
pull request (PR), 132
pull-request reviewer, 32

Q
QOS (quality of service), 123
QPM (queries per minute), 108
quality of service (QOS), 123
queries per minute (QPM), 108
queuing, 14-15

R
RAID (redundant array of independent

disks), 26
Rails, 98
read-eval-print-loop (REPL), 74-75
reconstruction, 62
redundant array of independent disks

(RAID), 26
release procedures, 54
reliability

documentation and, 32-33, 84
impact of, 63, 181
importance of, 8-9, 45, 57
need for, 4-5, 49-50, 95-96, 109-110
supports for, 99-100, 105

reliability stack, 10-11
remote procedure call (RPC), 108
remote teaming, 119-120
remote teams, 175
repeatability, 54
REPL (read-eval-print-loop), 74-75
Request for Comment (RFC), 32
request rate variable, 14
resilience, 14-15
resource gaps, 199
Response tool, 83
responsibility, 8, 78-79
retries, 14
RFC (Request for Comment), 32
risk, 193-196
risk analysis methodology, 193

(see also architectural analysis, data-
driven analysis)

risk diversity, 27
roadmaps, 178-179
RPC (remote procedure call), 108
runbooks, 84-85, 109

S
SA (static analysis), 185-186
safety critical system (SCS), 183-184

Index 229

Safety Integrity Level (SIL), 183-184
Sanagavarapu, Prashanth, 116
scalability, 64
scientific method, 62
scripts, 170

(see also drain script, shell scripts)
SCS (safety critical system), 183-184
Secure Sockets Layer certificate (SSL cert),

50
security, 30-31, 49, 131-132
Seeking SRE, 201
self-regulating processes, 6-7
service health, 152-153
service level agreements (see SLAs)
service level indicators (see SLIs)
service level objectives (see SLOs)
Service Reliability Hierarchy, 163
shell scripts, 170-171
SIL (Safety Integrity Level), 183-184
single point of failure (SPOF), 27
site reliability engineer (see SRE)
site reliability engineering, 3, 57, 117-118,

122, 162-163
Site Reliability Engineering, 201
Slack, 111-112
SLAs, 90, 91, 141, 155, 171
SLIs, 10, 90, 103-104, 139, 140
SLO definition document, 32
SLO model, 5
SLOs

alignment and, 63, 105-106
importance of, 66, 90, 122, 140-141
measurement of, 25, 55-56, 91, 138-139
reliability and, 10, 57, 138

soft skills, 69, 118
software developer, 18
software engineers, 12, 16, 133-134
SPOF (single point of failure), 27
sponsorship, 60, 137
Spotify, 39
SRE

expectations for, 25, 49-50, 95-96, 129,
181-182

mindset, 63-64, 90-92, 130, 142, 201
opportunities for, 34-35, 93, 172-173
responsibilities of, 26, 53-54, 65-66
role of, 2-3, 30, 45-46, 117, 156-159,

201-202
(see also site reliability engineering)

SREcon, 201
SSL cert (Secure Sockets Layer certificate),

50
stakeholders, 65
startups, 63-64
state, 133
static analysis (SA), 185-186
statistics, 2
storage, 26-27
storytelling, 69-70, 75, 101-102, 168

(see also blogs)
structured logging data, 56
sustainability, 38-39, 93
Swift, 21

T
targets, 55
TCP, 15, 22
team building, 158
team culture

challenges to, 45-46, 101, 174-175
development of, 36-37, 69, 111,

114-116, 120, 136-137, 146-147
(see also remote teaming)

team health, 39, 94, 118
team productivity, 124
teams, types of (see distributed teams,

local teams, remote teams)
testing, 54, 97
throttling, 14, 151
time management, 109-112
time series data, 56
time to x (TTx), 101

Index230

timeouts, 14-15
TLS, 20
toil, 181-182, 192
tooling, 43, 97-98, 113
tooling gaps, 199
total ownership model, 158
training, 162-163
triage, 61
Troxler effect, 122
TTx (time to x), 101

U
uniformity, 164-165
unreliability, 4-5, 56, 57
user-facing operations, 25

V
variables, 14

(see also latency variable, request rate
variable)

Varnish, 20
velocity, 95
virtual machine (VM), 131
virtual private cloud (VPC), 56
visibility, 74-75
VM (virtual machine), 131
VPC (virtual private cloud), 56

W
Wikimedia movement, 21
Wikipedia, 20-21
Wikitext, 21
Wilkinson, Larry, 122
workaround, 199
workflow, 127-128
written retrospectives, 33

Index 231

About the Editors
Emil Stolarsky and
Jaime Woo

Emil Stolarsky is a site reliability engineer, who previously worked on cach‐
ing, performance, and disaster recovery at Shopify and the internal Kuber‐
netes platform at DigitalOcean. These days, he’s the co-founder of Incident
Labs, and in his off-time can be found listening to Flume and fighting his
fear of heights by rock climbing.

Jaime Woo began his career as a molecular biologist before working at
DigitalOcean, Riot Games, and Shopify—where he launched the engineering
communications function. He co-founded Incident Labs, focusing on pro‐
viding teams with improved SRE tooling to return more time for planned
work. He is also an avid lover of dumplings.

	Cover
	NGINX
	Copyright
	Table of Contents
	Preface
	How We Structured the Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. New to SRE
	Chapter 1. Site Reliability Engineering in Six Words
	Alex Hidalgo

	Chapter 2. Do We Know Why We Really Want Reliability?
	Niall Murphy

	Chapter 3. Building Self-Regulating Processes
	Denise Yu

	Chapter 4. Four Engineers of an SRE Seder
	Jacob Scott

	Chapter 5. The Reliability Stack
	Alex Hidalgo

	Chapter 6. Infrastructure: It’s Where the Power Is
	Charity Majors

	Chapter 7. Thinking About Resilience
	Justin Li

	Chapter 8. Observability in the Development Cycle
	Charity Majors and Liz Fong-Jones

	Chapter 9. There Is No Magic
	Bouke van der Bijl

	Chapter 10. How Wikipedia Is Served to You
	Effie Mouzeli

	Chapter 11. Why You Should Understand (a Little) About TCP
	Julia Evans

	Chapter 12. The Importance of a Management Interface
	Salim Virji

	Chapter 13. When It Comes to Storage, Think Distributed
	Salim Virji

	Chapter 14. The Role of Cardinality
	Charity Majors and Liz Fong-Jones

	Chapter 15. Security Is like an Onion
	Lucas Fontes

	Chapter 16. Use Your Words
	Tanya Reilly

	Chapter 17. Where to SRE
	Fatema Boxwala

	Chapter 18. Dear Future Team
	Frances Rees

	Chapter 19. Sustainability and Burnout
	Denise Yu

	Chapter 20. Don’t Take Advice from Graybeards
	John Looney

	Chapter 21. Facing That First Page
	Andrew Louis

	Part II. Zero to One
	Chapter 22. SRE, at Any Size, Is Cultural
	Matthew Huxtable

	Chapter 23. Everyone Is an SRE in a Small Organization
	Matthew Huxtable

	Chapter 24. Auditing Your Environment for Improvements
	Joan O’Callaghan

	Chapter 25. With Incident Response, Start Small
	Thai Wood

	Chapter 26. Solo SRE: Effecting Large-Scale Change as a Single Individual
	Ashley Poole

	Chapter 27. Design Goals for SLO Measurement
	Ben Sigelman

	Chapter 28. I Have an Error Budget—Now What?
	Alex Hidalgo

	Chapter 29. How to Change Things
	Joan O’Callaghan

	Chapter 30. Methodological Debugging
	Avishai Ish-Shalom and Nati Cohen

	Chapter 31. How Startups Can Build an SRE Mindset
	Tamara Miner

	Chapter 32. Bootstrapping SRE in Enterprises
	Vanessa Yiu

	Chapter 33. It’s Okay Not to Know, and It’s Okay to Be Wrong
	Todd Palino

	Chapter 34. Storytelling Is a Superpower
	Anita Clarke

	Chapter 35. Get Your Work Recognized: Write a Brag Document
	Julia Evans and Karla Burnett

	Part III. One to Ten
	Chapter 36. Making Work Visible
	Lorin Hochstein

	Chapter 37. An Overlooked Engineering Skill
	Murali Suriar

	Chapter 38. Unpacking the On-Call Divide
	Jason Hand

	Chapter 39. The Maestros of Incident Response
	Andrew Louis
	Stop the Bleeding
	What’s Everyone Doing?

	Chapter 40. Effortless Incident Management
	Suhail Patel, Miles Bryant, and Chris Evans

	Chapter 41. If You’re Doing Runbooks, Do Them Well
	Spike Lindsey

	Chapter 42. Why I Hate Our Playbooks
	Frances Rees

	Chapter 43. What Machines Do Well
	Michelle Brush

	Chapter 44. Integrating Empathy into SRE Tools
	Daniella Niyonkuru

	Chapter 45. Using ChatOps to Implement Empathy
	Daniella Niyonkuru

	Chapter 46. Move Fast to Unbreak Things
	Michelle Brush

	Chapter 47. You Don’t Know for Sure Until It Runs in Production
	Ingrid Epure

	Chapter 48. Sometimes the Fix Is the Problem
	Jake Pittis

	Chapter 49. Legendary
	Elise Gale

	Chapter 50. Metrics Are Not SLIs (The Measure Everything Trap)
	Brian Murphy

	Chapter 51. When SLOs Attack: Pathological SLOs and How to Fix Them
	Narayan Desai

	Chapter 52. Holistic Approach to Product Reliability
	Kristine Chen and Bart Ponurkiewicz

	Chapter 53. In Search of the Lost Time
	Ingrid Epure

	Chapter 54. Unexpected Lessons from Office Hours
	Tamara Miner

	Chapter 55. Building Tools for Internal Customers that They Actually Want to Use
	Vinessa Wan

	Chapter 56. It’s About the Individuals and Interactions
	Vinessa Wan

	Chapter 57. The Human Baseline in SRE
	Effie Mouzeli

	Chapter 58. Remotely Productive or Productively Remote
	Avleen Vig

	Chapter 59. Of Margins and Individuals
	Kurt Andersen

	Chapter 60. The Importance of Margins in Systems
	Kurt Andersen

	Chapter 61. Fewer Spreadsheets, More Napkins
	Jacob Bednarz

	Chapter 62. Sneaking in Your DevOps Deliciously
	Vinessa Wan

	Chapter 63. Effecting SRE Cultural Changes in Enterprises
	Vanessa Yiu

	Chapter 64. To All the SREs I’ve Loved
	Felix Glaser

	Chapter 65. Complex: The Most Overloaded Word in Technology
	Laura Nolan

	Part IV. Ten to Hundred
	Chapter 66. The Best Advice I Can Give to Teams
	Nicole Forsgren

	Chapter 67. Create Your Supporting Artifacts
	Daria Barteneva and Eva Parish

	Chapter 68. The Order of Operations for Getting SLO Buy-In
	David K. Rensin

	Chapter 69. Heroes Are Necessary, but Hero Culture Is Not
	Lei Lopez

	Chapter 70. On-Call Rotations that People Want to Join
	Miles Bryant, Chris Evans, and Suhail Patel

	Chapter 71. Study of Human Factors and Team Culture to Improve Pager Fatigue
	Daria Barteneva

	Chapter 72. Optimize for MTTBTB (Mean Time to Back to Bed)
	Spike Lindsey

	Chapter 73. Mitigating and Preventing Cascading Failures
	Rita Lu

	Chapter 74. On-Call Health: The Metric You Could Be Measuring
	Caitie McCaffrey

	Chapter 75. Helping Leaders Prioritize On-Call Health
	Caitie McCaffrey
	Bring Quantitative Data
	Link SLAs to On-Call Health
	Treat On-Call Health like a Feature
	Measure Attrition

	Chapter 76. The SRE as a Diplomat
	Johnny Boursiquot

	Chapter 77. The Forward-Deployed SRE
	Johnny Boursiquot

	Chapter 78. Test Your Disaster Plan
	Tanya Reilly

	Chapter 79. Why Training Matters to an SRE Practice and SRE Matters to Your Training Program
	Jennifer Petoff

	Chapter 80. The Power of Uniformity
	Chris Evans, Suhail Patel, and Miles Bryant

	Chapter 81. Bytes per User Value
	Arshia Mufti

	Chapter 82. Make Your Engineering Blog a Priority
	Anita Clarke

	Chapter 83. Don’t Let Anyone Run Code in Your Context
	John Looney

	Chapter 84. Trading Places: SRE and Product
	Shubheksha Jalan

	Chapter 85. You See Teams, I See Product
	Avleen Vig

	Chapter 86. The Performance Emergency Fund
	Dawn Parzych

	Chapter 87. Important but Not Urgent: Roadmaps for SREs
	Laura Nolan

	Part V. The Future of SRE
	Chapter 88. That 50% Thing
	Tanya Reilly

	Chapter 89. Following the Path of Safety-Critical Systems
	Heidy Khlaaf

	Chapter 90. Applicable and Achievable Static Analysis
	Heidy Khlaaf

	Chapter 91. The Importance of Formal Specification
	Hillel Wayne

	Chapter 92. Risk and Rot in Sociotechnical Systems
	Laura Nolan

	Chapter 93. SRE in Crisis
	Niall Murphy

	Chapter 94. Expected Risk Limitations
	Blake Bisset

	Chapter 95. Beyond Local Risk: Accounting for Angry Birds
	Blake Bisset

	Chapter 96. A Word from Software Safety Nerds
	J. Paul Reed

	Chapter 97. Incidents: A Window into Gaps
	Lorin Hochstein

	Chapter 98. The Third Age of SRE
	Björn “Beorn” Rabenstein

	Contributors
	Kurt Andersen
	Daria Barteneva
	Jacob Bednarz
	Bouke van der Bijl
	Blake Bisset
	Johnny Boursiquot
	Fatema Boxwala
	Michelle Brush
	Miles Bryant
	Karla Burnett
	Kristine Chen
	Anita Clarke
	Nati Cohen
	Narayan Desai
	Ingrid Epure
	Chris Evans
	Julia Evans
	Liz Fong-Jones
	Lucas Fontes
	Dr. Nicole Forsgren
	Elise Gale
	Felix Glaser
	Jason Hand
	Alex Hidalgo
	Lorin Hochstein
	Matthew Huxtable
	Avishai Ish-Shalom
	Shubheksha Jalan
	Heidy Khlaaf
	Justin Li
	Spike Lindsey
	John Looney
	Lei Lopez
	Andrew Louis
	Rita Lu
	Charity Majors
	Caitie McCaffrey
	Tamara Miner
	Effie Mouzeli
	Arshia Mufti
	Brian Murphy
	Niall Murphy
	Daniella Niyonkuru
	Laura Nolan
	Joan O’Callaghan
	Todd Palino
	Eva Parish
	Dawn Parzych
	Suhail Patel
	Jennifer Petoff
	Jake Pittis
	Bart Ponurkiewicz
	Ashley Poole
	Björn “Beorn” Rabenstein
	J. Paul Reed
	Frances Rees
	Tanya Reilly
	David K. Rensin
	Jacob Scott
	Ben Sigelman
	Murali Suriar
	Avleen Vig
	Salim Virji
	Vinessa Wan
	Hillel Wayne
	Thai Wood
	Vanessa Yiu
	Denise Yu

	Index
	About the Editors
	Emil Stolarsky andJaime Woo

